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Fig. S1-1: Flowchart depicting the process of the analysis and the flow of data. Rectangles denote data (in- and output of analytical steps) and ellipsoids denote analytical steps and processes. Arrows pointing at arrows denote that data were combined. Note that the entire process was conducted separately for each taxon. Note that some of the environmental variables entered the process directly others as Principal Component Factor scores combining several of them. Note also that the entire model was derived from environmental and human impact variables as they were in the 1990s, and that human impact variables only, were used to project the model to the 2000s. Numbers refer to text passages in the main text. Abbreviations: GLM, Generalized linear model; MMI, Multi model inference, PCA, Principal component analysis.
Ape presence localities

Presence localities of eight African great ape taxa were included in the model (Fig. S1-1). 
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Fig. S1-2: Great ape presence localities available at the time of the study extracted from the A.P.E.S. database (http//:apes.eva.mpg.de) and used as input for the ape habitat model. 

Predictor variables

For vegetation, we used two measures of forest cover: percentage of forest cover at each sampling location, and the proportion of forest cover within an 8-km radius. Originally, we planned to include these measures separately for both time periods, the 1990s and 2000s. However, a random probe test showed that the two available layers were incompatible due to different classification methods (see below), which did not allow us to reliably estimate change in vegetation cover. Therefore we averaged the available percentages of forest layers of the periods 1992/1993 and 2000 and included them as a single predictor into our model (Table 1). 

We characterized human impact using five proxy variables for human populations, socio-economics and infrastructure (Table 1). We included human density as the number of individuals per km². The human influence index (HII), we calculated for each 5x5 km pixel as the inverse distance weighted average of human density in all pixels (Fotheringham, 1981). Poverty index was calculated as human population density divided by a measure of intensity of night time light, which has been proposed as a proxy for socio-economic status (Elvidge et al., 1997). 

Roads have been shown to have a detrimental effect on wildlife in Africa (e.g. Lahm et al., 1998; Laurance et al., 2006; Yackulic et al., 2011), because uncontrolled roads provide access for poaching and forest encroachment. Therefore we included distance to roads as an additional predictor. Lastly, we included distance to rivers. Navigable rivers are widely used as transportation routes, particularly in regions with low road density; thus they can have similar detrimental effects as roads. 

To reduce the redundancy inherent in our sets of predictor variables, we ran two separate Principal Component Analyses (PCA; see below). 

We extracted or derived all predictor variables from a grid of approximately 5x5 km resolution. GIS layers for all variables were prepared in R v. 2.10.1 (R Development Core Team 2009-2011) or ESRI® ArcMapTM v. 9.2, respectively. 

Comparison of vegetation layers

We extracted twenty-five values of percentage forest cover from both forest layers (GLCF AVHRR Continuous Fields Tree Cover Project; MODIS Vegetation Continuous Fields) for areas that did not change in percentage forest cover from the 1990s to the 2000s. We used satellite images from the 1990s and the 2000s (https://zulu.ssc.nasa.gov/mrsid/) to identify areas for which percentage forest did not change noticeably. We extracted values approximately evenly distributed across the range in values of percentage forest cover. We then compared values from the 1993 AVHRR and the 2000 MODIS layer (Fig. S1-2) and concluded that values extracted from the two forest cover layers varied considerably and, thus, should not be included in our analysis as separate layers for the two time periods, but rather as an average representing both time periods. Predictions of change in SEC over time were thus solely based on human impact variables (i.e., excluding change in forest cover and forest in neighbourhood), thereby underestimating rates of SEC decline.
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Fig. S1-3: Percent forest cover for twenty-five sites where forest cover did not change between 1993 and 2000 (assessed from satellite images) extracted from two different vegetation layers, namely GLCF AVHRR Continuous Fields Tree Cover Project and MODIS Vegetation Continuous Fields. Due to high variance between the two layers, we included the averaged percent forest cover, rather than using both layers as separate predictors for both time periods in our model.

Protected area

Our initial analysis also included each area’s protection status (IUCN categories one and two only) as one of the predictor variables for ape occurrence, because we expected higher ape occurrence probabilities inside than outside protected areas (c.f. Hall et al., 1998). However, since the majority of presence localities included in our model was collected inside protected areas, we decided to exclude this variable after visual inspection of our probability maps, as it biased the model results and considerably under-estimated ape occurrence probability outside protected areas. 

Ebola

Although disease - specifically Ebola - is an important predictor of ape occurrence probability (Walsh et al., 2003; Bermejo et al., 2006), we excluded this factor from our analysis. Accurate and detailed spatial information on Ebola outbreak sites for the 1990s is very limited (although more information is available for the 2000s) meaning that we could not use distance to Ebola outbreak sites as a predictor variable to fit our models. Consequently, results of SEC for G. g. gorilla and P. t. troglodytes do not include the devastating effects of Ebola, so for these, our estimates of SEC decline are conservative. 

Spatial resolution

In ArcMap, we standardized each variable’s grid extent and cell size and, where necessary, adjusted grid resolution by re-sampling from the original finer resolution. All maps with covariate values thus finally had a pixel size of ca. 25 km2, yielding a 1392*923 grid with 1,284,816 pixels. 

Principal Components Analysis

To reduce redundancy inherent in the set of predictor variables we ran two separate Principal Component Analyses (PCA): PCA 1 included all variables that had different values for the two time periods (Human population density, Human Influence Index, poverty); PCA 2 included all variables for which we did not have separate datasets for the two time periods (six climatic variables, distance to roads and distance to rivers). Prior to this, we visually ensured that all predictor variables had approximately symmetric distributions and transformed variables if necessary (Table S1-1). We used Varimax rotation to rotate factors such that each variable loaded strongly on one Principal Component (PC) and weakly on the others (Quinn & Keough, 2002; Field, 2005).
Table S1-1: Transformations used to reveal approximately symmetric distributions of all predictor variables.

Variable name
            Transformation

Human population density
x1/8
Human influence index
x1/3
Poverty


x1/6
Distance to rivers

x1/3
Distance to roads

x1/4
Precipitation driest

x1/4
Seasonality temperature
x1/2
Mean annual precipitation
x1/2
Mean annual temperature
x4
Percentage forest cover, forest in neighbourhood and distance to roads correlated only weakly with any other variable and also did not load strongly on the same PC as any other variable, so we excluded these from the PCA and included them as separate predictor variables in our model. Last, we also excluded the variable distance to rivers, as we expected an interaction between this variable and distance to roads and factor 1 (human impact), which would be difficult to specify, if distance to rivers loads strongly with other variables on the same PC.

PCA 1 revealed one PC with an Eigenvalue >1, explaining 87% of the total variance. After Varimax rotation, all three human impact variables (human population density, human influence index and poverty) loaded strongly on this PC (Table S1-2). 

Table S1-2: Loadings for the variables included in PCA 1 on the single Principal Component revealed. 

Variable name

PC1

Human population density
0.95

Human influence index
0.82

Poverty


0.93

Eigenvalue


1.62

% variance explained
            87.0

PCA 2 revealed two PCs with an Eigenvalue (1, together explaining 89 % of the total variance. After Varimax rotation, all climatic variables loaded most strongly on the first PC and mean annual temperature loaded most strongly on the second PC (Table S1-3). 

Table S1-3: Loadings of the variables included in PCA 2 on the two Principal Components. Figures in bold indicate the largest absolute loading of a variable.
Variable name

PC2
PC3

Precipitation driest

0.72    -0.40

Seasonality precipitation       -0.66
 0.49

Seasonality temperature        -0.88
 0.40

Mean annual precipitation
0.87    -0.34

Minimum temperature
0.92
 0.22

Mean annual temperature      -0.12
 0.99
Eigenvalue


2.05
 1.06

% variance explained
          69.8      18.9

MAXENT analysis
We repeated the MAXENT analysis 50 times per taxon, and for each run we made random partitions of the occurrence locality grid cells. Each partition was created by randomly selecting 75% of the occurrence locality grid cells as training data, with the remaining 25% reserved for testing the resulting models. We used recommended default values (Phillips et al., 2006) for the convergence threshold (10-5), maximum number of iterations (500) and regularization value (10-4) and let the program automatically select ‘features’ (environmental variables or functions thereof), following default rules according to the number of presence records (Phillips et al., 2006). Overall model performance was evaluated by means of the ‘Area under the Curve’ (AUC) determined by the Receiver Operating Characteristic Curves (ROC) analysis (Phillips et al., 2006). 

MAXENT model fitting procedures for eight great ape taxa yielded models with a good fit, with the ROC plots for both the training and the test datasets revealing mean AUC values between 0.857 and 0.966 and 0.790 and 0.932, respectively (Table S1-4). 
As the probability of pseudo-absences being selected near actual presences was higher for taxa with a small geographical range, maximum occurrence probabilities were higher for models of taxa with larger ranges than for taxa with relatively small ranges.

Table S1-4: Training and test AUC values (mean and range) and from fifty MAXENT models for eight great ape taxa. 

Species name


training



test

G. gorilla diehli
0.857 (0.837-0.878)


0.790 (0.742-0.848)

G. beringei graueri
0.931 (0.917-0.950)


0.914 (0.832-0.963)

G. gorilla gorilla
0.916 (0.902-0.929)


0.885 (0.847-0.920)

P. paniscus

0.966 (0.952-0.977)


0.929 (0.860-0.974)

P. t. schweinfurthii
0.945 (0.938-0.951)


0.929 (0.912-0.944)

P. t. troglodytes
0.947 (0.938-0.960)


0.922 (0.875-0.958)

P. t. verus

0.898 (0.863-0.924)


0.858 (0.806-0.894)

P. t. ellioti

0.966 (0.960-0.970)


0.932 (0.894-0.964)

Details of the model of suitable environmental conditions (i.e., logistic regression)
The response variable was the confirmed presence localities of the particular taxon combined with a set of pseudo-absences. The number of pseudo-absences selected from within the different taxa’s geographical limits ranged between 69 and 9,169. The model included the seven predictors described above (with distance to rivers and distance to roads transformed as shown in Table S1-1) as they were derived from the 1990 dataset. In addition to these predictors, we included the two-way interactions between distance to rivers and human impact on the one hand (Table 2), and distance to roads, on the other hand, assuming that the effect of distance to rivers might be stronger with smaller human impact and larger distances to roads. We also included the two climatic factors as squared terms since we assumed that for those factors an optimum value for ape habitat suitability might exist. Prior to fitting the models and deriving squared terms and interactions, we z-transformed all seven main effects to a mean of zero and standard deviation of one.
To avoid depending on a single (and potentially unduly complex) model, and to avoid overfitting and bias, we used multimodel inference (Burnham & Anderson, 2002). Specifically, we evaluated all of the possible models that could be built out of the set of main effects, non-linear terms and interactions. Models were constructed such that whenever a squared term was included, the corresponding linear term was included as well and that whenever an interaction was included, the two main effects involved were included, too. Hence, the total number of models was 468 (including the null model with no predictors). In each of the models we further included an autocorrelation term to account for potential spatial non-independence in the residuals (see below). 

To derive predictions for a particular data set, we first determined Akaike weights (Burnham & Anderson, 2002) for each of the 468 models, and then averaged their predicted occurrence probabilities per cell with the contribution of the individual models being weighted by their Akaike weights. After this was completed for all 1,000 datasets, we averaged the predicted occurrence probabilities per cell across all 1,000 predictions. 

Projections to the 2000s were made using the parameter estimates from the 1990s model, and environmental and human impact layers for the 2000s. These projections were made for each of the 1,000 sets of coefficients derived from the 1,000 data sets and then averaged. Per data set, we averaged the coefficients revealed from the 468 models with the contribution of the individual models being weighted by their Akaike weights. Predictions were made per cell.

Drawing inference based on summed Akaike weights

To make inferences about the importance of each of the terms in the models (main effects, interactions and non-linear terms) we determined for each of the terms the sum of the Akaike weights of the models in which they were comprised. However, due to interactions and squared terms being in the full model, the number of models per term varied considerably (i.e. terms were presented in 23–69% of the models with the intercept being in all models), and hence summed Akaike weights were no more comparable between different terms. Nevertheless to make them comparable, we first divided summed Akaike weights per term by the respective expected value, which we assumed to be the proportion of models the respective term was included in. Furthermore, to come up with an estimate of what could be regarded as a 'considerable' deviation from this expected value, we took the following approach. First, we ran a simulation with models based on pure random data. This revealed that the distribution of Akaike weights per model very closely followed a log-normal distribution. Based on this, we ran 10,000 simulations, each of which first generated 468 (i.e. the number of models in our set) log-normally distributed values summing to a total of one. We then summed these generated weights as we did for the original results, and hence came up with a distribution of summed Akaike weights, as expected given no impact of a particular term on the response. Finally, we determined the upper 2.5 percentile of the resulting distribution per term and considered a term as having considerable impact on the response when its actual summed Akaike weight was above this threshold.

Spatial autocorrelation

Presences and pseudo-absences modelled were likely to show spatial autocorrelation unexplained by the predictors included in the models, leading to non-independent residuals, which is an essential assumption of the analysis we conducted. We hence explicitly included autocorrelation in the model. We did this by first running the full model (i.e. the one with all main effects, squared terms and interactions included) and then deriving the residuals from it. We then determined, separately for each cell, the weighted average of the residuals of all other cells whereby the weight equalled
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(i.e. a Gaussian distribution), with dik being the distance between the two cells i and k, and  being set to 10 km. We then included the resulting values as an ‘autocorrelation term’ in all models for the respective taxon.

Model comparison and evaluation
Since we could not evaluate the SEC models with independent data (except for Liberia, see below) we here provide a list of references and other studies in preparation and compare them with our model predictions.
[image: image1.png]presence points

environmental & human
impact variables

presence
probability maps

pseudo-absences

predictors

GLM (logistic
regression)
combined with
MMI & model
averaging

parameter estimates

9
SEC map 19905 secmep20oos | 10
quantile
thresholds 1
binary presence binary presence | 12
maps 2000 maps 19905

<>E

results (rate of change,
patch size, etc.)

14



[image: image5.png]Geographic ranges
Chimpanzee
Bonobo

Eastern gorilla

- \Nestern gorilla

Cross River gorilla

0 425 850 1.275 1.700
e ——— KM





Figure S1-4: SEC map with regions highlighted (dark purple line) for which a quantitative or qualitative comparison with results with another study was possible.
1. Eastern chimpanzees

To examine model accuracy, we visually compared predictions of current suitable ape habitat distribution with those published by Plumptre et al. (2010). For eastern chimpanzees, models generally agreed, except for an area at the southern tip of their distribution in the DRC and Tanzania (Fig. S1-5). Here, our model predicted low suitability, whereas Plumptre et al. (2010) considered this area as one of the most suitable for eastern chimpanzees. Second, our model predicted suitable habitat for eastern chimpanzees east of the Congo River in the DRC along the border to Uganda, Burundi and Rwanda. However, Plumptre et al. (2010) predicted only low to intermediate suitability values for this area. These inconsistencies may be due to differences in presence localities, spatial resolution, environmental predictor variables and methodology. Our model results concurred with those of Plumptre et al. (2010) in that rainfall and temperature variables seemed to be important predictors of habitat suitability in this species (Table 3). 
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Fig. S1-5: Predicted distribution of suitable chimpanzee habitat in DRC, Central African Republic and Sudan by (a) Plumptre et al. (2010) and (b) this study. Chimpanzee habitat suitability ranges from light- to dark red, indicating low to high suitability, respectively. 

2. Bonobo

A study by Hickey et al. (in prep.) suggests very similar regions with high and low occurrence probabilities of bonobos as predicted by our SEC model. Bonobos seem to be largely confined to the Salonga region, the Tshuapa-Lomami region, the Maringa-Lopori region and the Lac Tumba Lac/ Mai-Ndombe region. Areas in-between have low probability values. This coincides very much with our SEC model predictions.
3. Ivory Coast

The West African chimpanzee SEC model predicts very low probability values for Ivory Coast, in particular in the central regions. Only in the Tai region, the North-West, North-East and South-West of the country, small SEC patches remain. These results concur very much with data from recent surveys that have been conducted in the country (Comoe region: Campbell et al., 2008, WCF 2009a; Cavally: WCF 2009b; Goin-Débé: Normand, 2009) 

4. Guinea

An on-going field survey in the Fouta-Djallon region indicates a widespread distribution of chimpanzees (S. Regnaut, pers. com.). The West African chimpanzee SEC model predicts intermediate to low SEC values for this region, but also suggests a widespread distribution of chimpanzees. 

5. Liberia

During a recent nationwide survey in Liberia 118 sampling locations were visited where line transect nest counts were conducted. This survey was based on a completely systematic design using a grid with a cell size of 9x9 km. Groups of two transects were placed in every third grid cell (27 km spacing). We used this survey dataset to evaluate the Liberian part of the SEC model for Pan troglodytes verus. First, we extracted for each transect the SEC value of the 5x5 km pixel, in which the transect was located. We then used SEC as the sole predictor of the transect nest observations in a Generalized Linear Model (GLM). We ran two GLMs, one with the raw nest counts on each transect as the response, a negative binomial error term and an offset term to account for differing transect length, and one with a binary response (nests present or absent). Both models showed a good correlation between transect nest counts and the SEC model.
Table S1-5: GLM results from comparison of transect nest survey in Liberia with SEC model prediction for West African chimpanzees. The values given are the parameter estimates (p-values).
Model



intercept

SEC

Binomial


-1.7796 (7.96e-09)
2.9704 (0.0254)

Negative Binomial model
-0.8775 (0.0193)
3.9659 (0.0258)
6. Sierra Leone

In Sierra Leone, signs of chimpanzees encountered by Brncic et al. (2010) generally matched with areas predicted suitable for chimpanzees by our model, with the exception of an area in the east, near the border to Liberia, for which our model appears to have over-estimated habitat suitability, as well as in western and central Sierra Leone, for which our model predicted only low to intermediate habitat suitability, but in which survey teams found signs of chimpanzee presence (Fig. S1-6). These discrepancies may be due to the fact that our model only included presence localities from Gola Forest, a forest block located in the southeast of the country on the border to Liberia. However, survey results reported by Brncic et al. (2010) showed that chimpanzees in Sierra Leone survived in areas inhabited by relatively high human densities and impacted by subsistence farming – habitat previously thought of as unsuitable for chimpanzees and for which we had no presence data at the time of our study. This may explain the relatively low suitability values predicted by our model and emphasizes the need for more survey data from different areas over the whole range of environmental conditions to improve model accuracy. 
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Fig. S1-6: (a) Distribution of signs of chimpanzee presence (blue squares) along transects, transect start and end points without signs of chimpanzee presence (green circles), data were recorded during a nationwide survey in 2008/2009 (Brncic et al., 2010), (b) chimpanzee habitat suitability in Sierra Leone predicted by our model (colours range from red to yellow to green, indicating low, intermediate and high SEC, respectively). White indicates unsuitable habitat.

Discussion of modelling results (table 3 main document)
Variables used in the models differ considerably among species in their estimated coefficients and overall importance. For instance parameter estimates for ‘distance to rivers’, which may indicate different suitability due to either a natural gradient of riverine vegetation or routes of transportation and access for hunters, were negative for six of the eight taxa (G.g.gorilla, G.g.graueri, P.t.troglodytes, P.t. schweinfurtii, P.t. verus, P. panicus). This suggests that hunting pressure potentially emanating from rivers may be less elevated for these taxa, than for G.g. diehli and P.t.ellioti. Rather, habitat conditions (i.e., vegetation) may be particularly suitable along watercourses. However, for P. panicus and P.t. schweinfurthii variable weights are only moderate suggesting a much weaker effect than for the other species. 
As shown in many previous studies roads often have a detrimental effect on wildlife (e.g. Lahm et al., 1998; Laurance et al., 2006), as they provide easy access to hunters. This is also what we find for all, but one taxon (G.b. graueri), which is that SEC increases with increasing distance from roads. G.b. graueri showed only a moderate positive gradient towards roads, similarly the effect for G.g. diehli was weak. One explanation for this might be that their ranges are the most fragmented of all taxa considered, making road-SEC relationships highly stochastic.
The forest variables are of particular interest, as they confirm an important issue. Relationships between occurrence of some taxa (G.g. gorilla, P. paniscus) and forest cover are only moderate for central Africa. This is because several large forest blocks host almost no apes anymore, like the Minkebe forest block or other regions in Gabon (Walsh et al., 2003). Similarly, bonobo distribution does not match completely with forest cover in DRC (Hickey et al., in prep). 
Parameter values for human impact were negative for all eight taxa. However, weights differed considerably between species and regions. Weights were lowest for G.g. diehli and P.t. schweinfurtii, confirming the close spatial association between humans, on the one hand, and Cross River gorillas and eastern chimpanzees on the other, in many places. Nevertheless, the negative estimates for all taxa strongly confirm SEC loss in proximity to humans.   
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