A Full-Scale Test of The Language Farming Dispersal Hypothesis

Harald Hammarström harald2@cs.chalmers.se

January 17, 2009

Language Families

- There are some 7 000 languages in the world
- Language family defined as
 - a set of languages (possibly a one-member set)
 - with at least one **sufficiently attested** member language
 - that has been **demonstrated in publication**
 - to stem from a common ancestor
 - by orthodox comparative methodology
 - for which there are **no** convincing published attempts to demonstrate **a wider affiliation**
- Application of this definition yields some 400 families for the 7 000 languages (shown on handout!)

Size of a family = the number of languages belonging to it

- The ca 400 families are of very unequal size
- A few are very big and very many are tiny
- Their sizes are not normally distributed
- In fact, the rank-size distribution follows a power-law (aka Zipfian, log-normal etc.)

Rank-Size Plot

Why Some Big and Some Small?

Two explanations so far proposed:

a) Farming/Language Dispersal Hypothesis

Some families are big because their speakers acquired farming, which allowed unprecedented expansion

We follow up this line today.

b) A power-law distribution are the expectation of stochastic branching processs

Not discussed today.

Farming/Language Dispersal Hypothesis

The farming/language dispersal hypothesis makes the ... proposal that the present-day distributions of many of the world's ... language families can be traced back to the early developments and dispersals of farming ... (Bellwood & Renfrew 2002:i)

- There are many case studies of individual families which support the FLDH
- There are many counterexamples
 - Individual widespread families with no associaton to farming
 - Presence of farming without expansion

On a worldwide scale, i.e., with all families taken into account

- Does the farming have any explanatory power in predicting which families are large (and which are not)?
- Does the geospatial distribution of the observed farming language families show an east-west spread (rather than a north-south) as predicted if the cause of their spread is farming, cf. Diamond 1997?

Every family is judged **AGR**icultural (AGR) or **H**unter-**G**atherer (HG)

• A language is a Hunter-Gatherer (HG) language iff

its speakers subsist more than 50% on

- hunted/gathered food (= reproduction of species not controlled)
- as of **ethnographic evidence** at
- -first eyewitness documentation time
- A family is HG iff all of its member languages are HG (otherwise AGR)

AGR		HG		
Atlantic-Congo	1400	Pama-Nyungan	175	
Austronesian	1275	Sepik	48	
Indo-European	449	Eyak-Athapaskan-Tlingit	45	
Sino-Tibetan	402	Algic	44	
Afro-Asiatic	346	Lower Sepik-Ramu	33	
Trans New Guinea	338	Carib	32	
Otomanguean	179	Panoan	28	
Austroasiatic	168	Salishan	27	
East Sudanic	92	Tucanoan	25	
Tai-Kadai	76	Lakes Plain	20	
Tupí	76	Tor-Orya	13	
Dravidian	73	Cenderawasih Bay	11	
Mande	71	Eskimo-Aleut	11	
Mayan	69	Bosavi	10	
Central Sudanic	66	Great Andamanese	10	
Arawak	62	Miwok-Costanoan	10	
Uto-Aztecan	61	Western Daly	10	
•••	• • •	10		

	AGR	HG	ALL
# families	165	229	394
\sum -size	6012	1027	7039
Mean size	36.44	4.48	17.87
Median size	2	1	2

Is the correlation **AGR** vs. mean size statistically significant?

Test: Sample 1000 subsets S_i of size 165, and check how many have a sum size \geq 6012

AGR-families and Size

- The correlation between AGR and (average) size is highly significant (p < 0.001)
- What about rhe Small **AGR** families?
 - If small ≤ 10 then there are some 164 small AGR families
 - A majority (ca 100) of these are found surrounded by other AGR families in East Papua (i.e., islands off New Guinea), Sahel, Mexico, Andes, Eurasia
 - The rest are found in **HG** surroundings in the Amazon and New Guinea

So FLDH passes first round!

FLDH and Geographic Distribution

- Agriculture spreads east-west easier than north-south
- If agriculture is indeed the cause of large families then the large families should show east-west expansion rather than north-south
- Measure the geospatial distribution of a family:
 - Database of center coordinates for all languages
 - East-west (EW) expansion is the difference between the eastern and western endpoint languages of the family
 - North-South (NS) expansion is the difference between the northern and southern endpoint languages of the family
 - Define **HOR** orizontality as the ratio between east-west expansion and north-south expansion $HOR = \frac{EW}{NS}$
- NOTE: Isolates are excluded [198 points remaining]

W EndpointKanuri, MangakbyNiger10.85 EE EndpointBertibytSudan32.72 ES EndpointKanuri, CentralkncNigerian11.01 NN EndpointBertibytSudan20.61 N

$$EW = 32.72 - 10.85 = 21.88$$
$$NS = 20.61 - 11.01 = 10.60$$
$$HOR = \frac{21.88}{10.60} = 2.06$$

HOR-Size Correlation

HOR-Size for AGR only

HOR-Size for HG only

HORizontality and AGR/HG-families

It appears that the there is not significantly more horizontality in AGR families than in HG (not even for the largest families)

	AGR	HG	ALL
# families	90	108	198
Mean HOR	2.24	2.11	2.17
Median HOR	1.30	1.21	1.25

Conclusions

On a shallow but world-wide test:

- Most families are small, whether agricultural or huntergatherer
- Agricultural families are significantly larger than huntergatherer families (on average)
- Small agricultural families more often than not have (only) agricultural neighbours
- If agriculture was the cause of the larger agricultural families, one would expect them to show more horizontalness than the corresponding hunter-gatherer families

This is not the case