Variation in First Language Development

Stoll \& Lieven

Lecture 4:
 The communicative environment, input and uptake

Outline

- What is actually in the input?
- An example of how children might learn from it
- A cross linguistic model of the optional infinitive error
- The development of communicative intention and intention-reading
- Cross-cultural and cross linguistic issues

The input

Frequency of units of $1-5$ words in 1.72 millions words of CDS

Implications

- We start by counting at the level of specific form and string:
- is/are
- I'm X-ing/You're Y-ing
- What do X?/What can X?
- We only count at more abstract level, when there is evidence for it
- We do not credit the child with pre-given, abstract linguistic categories from the outset

Do typological differences affect repetitiveness in CDS?

- English has very fixed word order
- The tiger ate the mouse
- The mouse ate the tiger
- German has more word order variants than English but has case inflections
- Der Tiger frisst den Hund
- Den Hund hat der Tiger gefressen
- Russian has 'free word order'
- Ja videl svoju mašinu (all 24 words orders possible)

Two possible hypotheses

H0: Independent of language we expect itemspecificity at the beginning of utterances.

H1: The rigid word order of English determines the highly predictable beginning of utterances. The degree of word-order determination will determine the degree of item-specificity.

Comparing input across languages

- ENGLISH (Manchester corpus):
- 6 mothers
- children between 1;9-2;6
- $M=1400$ utterances per mother
- GERMAN (Szagun corpus):
- 6 mothers
- children at 1;8 and 2;5 (+ part of file 1;4)
- 1400 utterances per mother
- RUSSIAN (Stoll corpus):
- 4 mothers
- children between 1;8-2;4
- 1400 utterances per mother

Lexical frames

- First one-three words of utterance
- (omitting communicators, onomatopeia, noises)
- Frame $=4+$ tokens per mother

What counted as a 'frame'?

Within one mother:

- That's a dog
- That's a girl
- That's a flower
- That's your pen

What counted as a 'frame'?

Example utterances:

- That's a dog
- That's a girl
- That's a flower
- That's your pen

What counted as a 'frame'?

Example utterances:

- That's a dog
- That's a girl
- That's a flower
- That's your pen
- That's a lorry

What counted as a 'frame'?

Example utterances:

- That's a dog
- That's a girl
- That's a flower
- That's your pen
- That's a lorry

Input - English, German and Russian

Stoll, Abbot-Smith \& Lieven, 2009

Percentage of utterances by individual mothers accounted for by frames and core frames

Number of one-, two- and three-word frames for individual mothers


```
When English needs three words, Russian often needs
only one
e.g. Wh-question, copulas.
=>Russian often drops arguments, has no articles, zero in present
tense copula.
```

German has gender in the article, so there are more possibilities
=> 3 word frames are less likely than in English where there is no gender in the article

Conclusions

- Middle-class CDS is highly repetitive in initial sequences in three typologically different languages
- Typology makes a difference to the degree of repetitiveness
- We don't yet know how this affects learning

Frequency effects in language acquisition

- Correlations between how much children are spoken to and the size of their lexicons
- Correlations between relative frequency of specific, lexically-based strings in the input and their order of emergence in children's language e.g. copula constructions (Cameron-Faulkner, Lieven \& Tomasello, 2003)
- Correlations between provision of complex syntax by children and relative frequency of complex constructions used by teachers and parents (Huttenlocher et al, 2002)

'Frequency' is short-hand for the number of times an event is experienced

- Experiencing an event repeatedly, changes its representation in the sense of how entrenched the response pattern is by comparison with other response patterns.
- How often an event is experienced makes a profound difference to all aspects of language development and use.
- We often don't know the right level of analysis for a frequency-based prediction, so we have to test for it.

Ol errors in German, Dutch and Spanish

Freudenthal, Pine, Aguado-Orea \& Gobet, 2007

The Optional Infinitive [OI] error

The child uses non-finite verb forms in contexts where finite verbs forms are obligatory That go there vs. That goes there (3sg present)

Wexler's explanation

-The child's grammar identical to adult's except the child is subject to a Unique Checking Constraint that can result in underspecification of Tense and/or Agreement
-The unique checking constraint may prevent the child from checking the D feature of the Subject DP against more than one D feature (tense and agreement). So either can be optionally unspecified: either no tense or wrong agreement (Him naughty, Her coming)
-Explains OI in obligatory subject languages (English, Dutch, German) Explains few Ol errors in optional subject languages (Spanish, Italian) where only one feature need usually be checked (Tense)

Strengths of the ATOM

- Explains statistical patterns of error in English
- He goes and He go, but few I goes
- He goes, He go and Him go but few Him goes
- Explains why children learning other obligatory subject languages (e.g. Dutch, French) use infinitives in main clauses
- Hij lopen (He to walk) II faire (He to do)
- Explains why children learning optional subject languages (e.g. Spanish) do not use infinitives in main clauses
-(El) habla (He speaks) not *(El) hablar (He to speak)

The MOSAIC model [Pine, Gobet \& Freudenthal,2005]

MOSAIC is a simple distributional learner that:

- Learns utterance final words and sequences
- Do you want a biscuit?

Biscuit
A biscuit
Want a biscuit

- Generates novel utterances by linking together words that have been preceded and followed by overlapping sets of words and substituting them in utterance final sequences
- a linked to the on basis of: Want a biscuit

Want the ball

- allows: Want the biscuit

Eat a biscuit
Eat the biscuit

MOSAIC-Speak

ROTE LEARNED

- DOESN'T FALL OUT
- CHEEKY FACE
- WHERE DO YOU WANT THEM TO GO?
- HOLD THE CASE THEN
- TELL GRANDMA THEN
- IT'S THE PHONE
- WHICH FRIENDS ARE THEY THEN?
- GONNA WEE IN THE POTTY

GENERATED

- MIGHT FALL OUT
- CHEEKY FOOT
- WHERE DO YOU WANT HIM TO GO?
- TAKE THE CASE THEN
- SHOW GRANDMA THEN
- IT'S A PHONE
- WHICH FRIENDS IS HE THEN?
- GONNA WEE IN

THE BALLOON

Ol errors

	Ol errors at lowest MLU point (\%)
Dutch	75
German	61
Spanish	18

- At the same MLU for the child and the MOSAIC output, measure the proportions of:
- Compound finites Er hat es gesehen

He has it seen

- Optional infinitives Er es gesehen*

He it seen

- Simple finites

Er sieht es
He sees it

Pattern of finiteness marking as a function of MLU for Leo and MOSAIC-Leo (German)

Data for Leo

Model of Leo

MOSAIC simulates the moderately high proportion of OI errors in German (and low proportion of compound finites)

Pattern of finiteness marking as a function of MLU for Juan and MOSAIC-Juan (Spanish)

Data for Juan

Model of Juan

MOSAIC simulates the low proportion of OI errors in Spanish (and high proportion of simple finites)

When compared to children at the same MLU, MOSAIC simulates:

- the high proportion of Ol errors in Dutch and low proportion of compound finites
- the moderately high proportion of Ol errors in German and low proportion of compound finites
- the low proportion of Ol errors in Spanish and high proportion of simple finites

Why?

	Ol errors at lowest MLU point (\%)		
Dutch	75		
German	61		
Spanish	18		

	Ol errors at lowest MLU point (\%)	Compound Finites in Input (\%)	
Dutch	75	31	
German	61	22	
Spanish	18	25	

	Ol errors at lowest MLU point (\%)	Compound Finites in Input (\%)	Utterance- final finite verbs (\%)
Dutch	75	31	18
German	61	22	35
Spanish	18	25	74

Some claims made about language learning

Cultures:

- in which children are not spoken to before they speak
- in which babies are not interacted with much
>Preverbal intention reading and communicative interaction is a prerequisite for language development How similar/different is the communicative behaviour and environment of children from different cultures?
$>$ Children only require minimal input to learn language
> Children can learn language through overhearing
Are children receiving minimal input?

Communicating with other minds

- Children start to communicate intentionally
- They start to behave as if others were communicating intentionally
- They show developing skills at reading other minds

Bruner, Bates, Gergely, Tomasello, Liszkowski, Warneken, Moll

Misunderstanding

[Liszkowski, 2006]

Uninterested

Helping (waraneon 200e)

Early social cognition in three cultures

Callaghan, Moll et al. (submitted)

- Peru, Junin province: rural villages; 3,000m
- India, Andra Pradesh: rural villages
- Canada, Nova Scotia: small rural town

Imitation
Instrumental helping
Declarative pointing
Joint attention
Pretence
Pictorial symbols

Pesults

- Understanding intentions and attention
- Similar across cultures and at similar ages
- Except for one task involving locomotion around a barrier
- Sharing intentions and attention
- Similar across cultures
- Except Indian children slightly more collaborative at a younger age but less pointing
- Comprehending and using symbols
- Canadian children between 2.5-3.0
- Peruvian and Indian children approaching 4.0

Interaction in two cultures

Brown, 2008

- Tzeltal (Mexico)
- Rossel (Papua New Guinea)

Similarities:

Small-scale traditional societies
Extended households, multiple caregivers, child caregivers Multiparty interactions the norm

```
Tzeltal:
Physical restraints
Few interlocutors,
    restricted interactional space
Nonresponsiveness to
    infant's preverbal 'utterances'
Little scaffolding
Low interaction density
```


Rossel:

Physical freedom
Many interlocutors,
large interactional space Responsiveness to preverbal 'utterances'
Ample scaffolding High interaction density

Interim results

- Pace of interaction much higher in Rossel
- Twice as many initiations per minute ($\approx 7: 3$)
- Due to other interactants
- Rossel infants initiate interaction only very slightly more than Tzeltal infants
- Pointing similar and develops at same age

Comparison with a 'technological culture'
 (Stoll, Lieven et al.,)

Data collection

'BABIES' 2-3 hours per cycle	6m	8m	10m	12m	15m	18m	21m	24 m
Dipkala Saphal	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{array}{\|l} X \\ X \end{array}$	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & X \\ & X \\ & X \end{aligned}$	X
'TWO'-S 3-4 hours per cycle			2;2-3;2		3;4-3;8		$\begin{aligned} & 2 ; 2 \\ & 2 ; 6 \\ & 2 ; 10 \end{aligned}$	
Khem Kamala			Monthly Monthly		Bi-monthly Bi-monthly			
‘THREE'-S 3-4 hours per cycle			3;2-4;2		$4 ; 4-4 ; 8$		$\begin{aligned} & 3 ; 0 \\ & 3 ; 4 \\ & 3 ; 9 \end{aligned}$	
Kalpana Man Kumar			Monthly Monthly		Bi-monthly Bi-monthly			

What to compare with?

The Rigol corpus (Biberthal)

‘Babies’: Johanna Lars

‘Two’-s:
Pauline
Sebastian
'Three'-s: Corinna
Niklas

Categories for characterising the communicative environment

Proportions per hour	Child	Mother	Other adulls	Other children
Minutes with utterances				
Pointing				
Imitation				
Offering				
Reaching/Requesting				
Attention getting				
Showing				
Touching				
Feeding				

Interim results: Pointing

- Pointing goes up between 0;8-1;3, particularly after 1;0
- Individual differences most obvious
- No obvious correlation with the amount of pointing by mothers or by everyone to babies
- No obvious cultural difference but we need much more fine-grained analysis

Interim results: Other

- For babies, the main form of interaction seems to be dyadic, often, though not always, with the mother
- Interacting with babies seems to afford the same types of interactions in both cultures
- For Chintang toddlers, the part played by other children is always greater and increases with age
- We cannot assess the volume of talk to the children from these results, but they are certainly being talked to
- At least on these measures, individual differences can outweigh cultural differences

The contexts of language development

- Children must learn language, at least in part, from what they hear.
- Almost all our research is based on very intensive, dyadic conversations between mothers and children from middleclass backgrounds in urban, technological societies.
- We have no idea how much is enough
- And enough for what?????

What is 'naturalistic data'?

Our study:

Chintang and Biberthal

- Outside and inside
- Different situations
- Mother not always present
- Other children present

Most previous studies:

- Inside the house
- Mother and child playing
- Only mother present
- No other children

Possible ways of learning distributions and form-meaning mappings

- Children could learn from other children
- Children could learn from listening and looking
- Caretaker talk may not be closely tied to the child's vocalisations but might be tied to the child's attentional behaviour
- Children could learn by imitating adults and then starting to vary the imitations

