Ioana Chitoran Dartmouth College, USA

Lezgi in the typological context of vowel devoicing

Conference on Caucasian Languages MPI, Leipzig, 13-15 May 2011

Work in collaboration with:

- Khalil Iskarous, Haskins Laboratories & University of Southern California, USA
- Egidio Marsico, Laboratoire "Dynamique du Langage", CNRS, Lyon, France

Goal of today's talk

- To examine a well-documented process of vowel loss in Lezgi
- To propose vowel devoicing (VDev), based on acoustic and perceptual evidence

Outline

- 1. A typology of Vdev phenomena
- 2. The relevant data in Lezgi
- 3. The interpretation of acoustic evidence
- 4. The interpretation of perceptual evidence
- 5. Implications for sound change

Outline

1. A typology of Vdev phenomena

- 2. The relevant data in Lezgi
- 3. The interpretation of acoustic evidence
- 4. The interpretation of perceptual evidence
- 5. Implications for sound change

Most common conditions for VDev

In a C_1VC_2 sequence

- a. Predominantly high vowel
- b. At least one voiceless consonant (especially voiceless fricatives and aspirated stops)
- c. Unstressed/unaccented vowel
- d. Unrounded vowel

Cho 1993, Gordon 1998, Chitoran & Marsico 2010

Some examples:

Quebec French

tisse ['tis] 's/he weaves' tissu [ti'sy] 'fabric' Turkish tüfek [ty'fek] 'rifle' Japanese [**çi**kíso] 'pigment' [sutérú] 'to throw'

Properties

- VDev is phonetically common
- Highly variable: within and across languages and speakers
- Distinguish positional (word-, phrase-, utterance-final) vs. non-positional devoicing (Chitoran & Marsico 2010)
- Often reported as a particular manifestation of vowel *reduction* or *deletion*.

Vowel devoicing database (Chitoran & Marsico 2010)

Three main sources:

- 1. Gordon 1998 (55 languages)
- 2. UPSID 451 (Maddieson 1984; Maddieson & Precoda 1990)
- 3. Additional data from approximately 100 languages *(grammars and articles)*

We retained 39 languages with devoicing.

Genetic and geographic distribution of the sample

Non-positional devoicing is more common

Of the 39 languages:

- Positional devoicing only 12
- Non-positional devoicing only 22
- Both types of devoicing

5

Phonetic accounts

Non-positional VDev is understood as an assimilatory process

- Aerodynamic voicing constraint (Ohala 1983)
 - Insufficient transglottal pressure differential
 - Narrow constriction of high V impedes air flow
- Glottal gesture overlap (e.g., Jun & Beckman 1993)
 - Absence of stress shortens V, increasing overlap between C_1 and C_2
 - Glottal opening gesture of C may extend over the V gesture

Outline

- 1. A typology of VDev
- 2. The relevant data in Lezgi
- 3. The interpretation of acoustic evidence
- 4. The interpretation of perceptual evidence
- 5. Implications for sound change

The Lezgi facts

- High vowels [*i*, *y*, *u*] disappear in pre-stress position, after a voiceless obstruent "syncope / reduction / deletion"
- May be perceived as secondary articulations on C1

Uslar 1896, Talibov 1980, Kodzasov 1990, Haspelmath 1993 - Daghestan dialect

Babaliyeva 2007 - Azerbaijan dialect

Morphological alternations

Monosyllabic roots

absolutive singular (root stress)

> sík′ t∫^húf t^húp^h t∫^hýk^h

absolutive plural (*no root stress*)

 $s^ik' - ár$ 'fox' $t \int^{hu} f - ár$ 'cloud' $t^{hu} p - ár$ 'cannon' $t \int^{hy} k^w - ér$ 'flower'

All data from Azerbaijan dialect

Disyllabic roots

No stress alternation

 k^{hi} táb k^{hi} táb - ar'book' $t^{hy}k^w$ én $t^{hy}k^w$ én - ar'shop' $t^{hu}p'$ ál $t^{hu}p'$ ál - ar'ring' $t\int^{hu}k'úl$ $t\int^{hu}k'úl$ - ar'knife'Can be reflected in orthography:ktab, ktabar, Qsar (Qusar)

(for more examples see Haspelmath 1993: 36)

Outline

- 1. A typology of VDev
- 2. The relevant data in Lezgi
- 3. The interpretation of acoustic evidence
- 4. The interpretation of perceptual evidence
- 5. Implications for sound change

Qualitative acoustic description

Data from 7 speakers recorded in Azerbaijan During the vowel portion: –No periodic voicing –Unclear formant structure –Strong frication noise

Examples: $t \int^{hu} k' úl$ 'knife'sik'-ar'fox' pl.

[t∫^{hu}k′úl]

'knife'

19

[sⁱk'-ar] 'fox' pl.

Presence of a vocalic gesture

Evidence from secondary labialization of (non-labial) C2

- Voiced C1 variable labialization

 lytk^he ~ lytk^{hw}e
 'boat'
 sud
 sut ar ~ sut^w ar
 'fist'
- Voiceless C1 more systematic labialization

singular	plural (more regular)	
k'uk'	k ^h uk′ [₩] − ar	'peak'
tyd	t ^{hy} t ^w – er	'throat'
t∫ ^h yk ^h	t∫ ^{hy} k ^w – er	'flower'

(A)E

Acoustic evidence (Chitoran & Iskarous 2008)

• Hypothesis:

If V gesture is still present \rightarrow similar fricative-V coarticulation patterns will be found in both stress contexts.

Comparison of DFT spectra of [s] preceding stressed and unstressed V

sík' – sⁱk'ár vs. sút^h – s^utár vs. sáf – safár 'fox' 'measure of land' 'sieve'

Local spectral properties

- Data from 7 speakers
- Two windows extracted from each fricative:
 - 2/3 into [s] (40 ms)
 - last 1/3 of [s] (40 ms)

Differences among [*i*,*y*,*u*] are visible in the energy between 4 and 9 kHz

Energy between 4 - 9 kHz, averaged across frequency

Results

- Coarticulation patterns in [sik', sut^h] (full V) are similar to those in [sⁱk'ar, s^utar] (non-full V)
- Suggests presence of V gesture in both stressed and unstressed contexts

Acoustic duration of [s]

• Hypothesis:

If V is present but devoiced, [s] will be longer before non-full Vs (*s^up-ar*, *s^ut-ar*) than before full Vs (*saf-ar*, *sal-ar*, *sam-ar*)

• Interpretation:

The longer [s] duration corresponds to the devoiced vocalic portion, visible as increased frication due to a highly constricted V gesture

[s] duration (*ms*) is longer before [u] (*non-full V*) than before [a] (*full V*)

Outline

- 1. A typology of VDev
- 2. The relevant data in Lezgi
- 3. The interpretation of acoustic evidence

4. The interpretation of perceptual evidence5. Implications for sound change

Perception

Hypothesis:

- If the V gesture is present in the stressed environment only:
 - coarticulation effects on the fricative should be present only in that environment
 - the identification rate for the V should be higher in the stressed environment

(cf. Beckman & Shoji 1984 for Japanese)

Experiment Forced choice identification

- Stimuli [s] excised from real Lezgi words, in stressed and unstressed context
 c(ilci) c(ith) c(if) c(ilciar) c(ltiar)
 - $s(ik'), s(ut^h), s(af)$ s(ik'ar), s(utar), s(afar)
- Three response choices:
 "si", "su", "sa"
- Participants: Native speakers of French (11), Japanese (9), Lezgi (2)

Stimuli

For each fricative, **6 portions** were presented, randomized:

- **1** first third of [s]
- 2 second (middle)
- **3** third (end)
- 4 first + second third
- 5 second + third
- 6 full fricative

5 repetitions of each, all randomized

Identification rate of Lezgi Vs as a function of stress

9 Japanese listeners

11 French listeners

2 Lezgi listeners 32

Results

- Different identification patterns for [sa] vs. [si, su]
- [si, su] have comparable (relatively high) identification rates *in both stressed and unstressed environments*
- Identification of [u] is the least affected by stress → robust acoustic effects of labiality
 Support for the presence of a vowel gesture

Outline

- 1. A typology of VDev
- 2. The relevant data in Lezgi
- 3. The interpretation of acoustic evidence
- 4. The interpretation of perceptual evidence

5. Implications for sound change

- The speech production system seen as a dynamical system
- A change in progress is a transition state
- From instability to stability:
 - of categories, allophonic variation
 - gradient, phonetic variation is not necessarily eliminated ("stable variation")
- VDev is phonetically common but phonologically rare *(allophonic variation in Japanese, Korean)*

Relevant properties

- The variation in Lezgi is gradient, quantitative variation resulting from variable overlap.
- The role of morphology
- Evidence from orthography
- Initial C clusters very few (*tfka 'place' < tfi'ka*)
- Very slow progress (by comparing Uslar 1896 and Haspelmath 1993)

Predictions

• V loss for polysyllabic roots only, except for:

– Secondary labialization in the case of [u]

- No loss for monosyllabic roots, protected by morphological alternation
 - Possibly maintain VDev or phonemic secondary articulations (especially labialization)

Conclusions

- Some evidence from production and perception: vowel devoicing may be present in Lezgi.
- The interaction of phonetic and morphological factors predicts that the language may reach a stage of allophonic variation, rather than complete vowel loss.

Thank you

Acknowledgments:

- All native speaker participants
- Richard Barton (Dartmouth), Emmanuel Ferragne (DDL, Lyon)
- Kim Betts, research assistant
- The Dickey Center for International Understanding, Dartmouth College

References

- Babaliyeva, A. 2007. Présentation du dialecte Lezgi de Yargun (Azerbaïdjan): grammaire, textes glosés et traduits. Mémoire principal de Master II, Ecole Pratique des Hautes Etudes, Paris.
- Beckman & Shoji. 1984. Spectral and perceptual evidence for CV coarticulation in devoiced /si/ and /syu/ in Japanese. Phonetica 41. 61-71
- Chitoran & Iskarous. 2008. Acoustic evidence for high vowel devoicing in Lezgi. In Socks et al. (eds.) Proceedings of ISSP 8, Strasbourg, France, December 2008. 93-96
- Chitoran & Marsico. 2010a. Vowel devoicing an updated phonetic typology. Paper presented at BLS 36. February 2010
- Chitoran & Marsico. 2010b. A perceptual test of language-specific temporal organization. Poster presented at LabPhon 12, U of New Mexico, July 2010.
- Cho. 1993. The phonology and phonetics of voiceless vowels. BLS 19. 64-75
- Gordon. 1998. The phonetics and phonology of non-modal vowels: a crosslinguistic perspective. BLS 24. 93-105
- Haspelmath, M. 1993. A Grammar of Lezgian. Mouton de Gruyter
- Jun & Beckman. 1993. A gestural-overlap analysis of vowel devoicing in Japanese and Korean. Paper presented at January 1993 LSA Meeting, Los Angeles, CA
- Kodzasov, S. 1990. Fonetika. In A.E. Kibrik & S.V. Kodzasov (eds.) *Sopostovitel'noe izuchenie dagestanskix jazykov* Moscow. 311-347
- Ohala. 1983. The origin of sound patterns in vocal tract constraints. In MacNeilage (ed.) The Production of Speech. 189-216
- Talibov, B.B. 1980. *Sravnitel'naja fonetika lezginskix jazykov* Nauka: Moscow.
- Uslar, P.K. 1896. Etnografija Kavkaza. Jazykoznanie. VI. Kjurinskij jazyk. Tbilisi.