TONE-LARYNGEAL-MORPHOLOGY IN CHICAHUAXTLA TRIQUI

Triqui is an endangered member of the Oto-manguean family, Mixtecan branch, which has three varieties: Chicahuaxtla, Copala, and Itunyoso. Of the three Chicahuaxtla is tonally the most complex, as is has five-level tone $5-1$, the greatest number of tone combinations, such as 45,43 , etc. as well as has tones with final glottals $/ 2 \mathrm{~h} /$, e.g. $2 \mathrm{~h}, 4$, and even floating tones. It also has another tone-laryngeal combination $3^{\mathrm{h}} 3$ and $3^{7} 3$, in which the glottal element is manifested midsyllable, Longacre 1952 \& 1958, DiCanio 2008, 2009, 2010, \& 2012, and DiCanio \& CruzMartinez 2010. Triqui is a language which is syllabically strongest on the right, as only the last syllable shows the richest assembly of tone shapes. The non-final syllables generally appear with tone 3 , which is the default tone. This paper will discuss the tone-laryngeal elements that signify the morphological categories for person, number, possession, adjectives, tense \& aspect. The examples below illustrate these features
(1) Free
a. $\operatorname{achin}^{45} n i^{3 h}$ b. achin $^{45} r e^{17}$
c. $a^{2} h i^{43}$
d. achin 4 ?
e. $a^{2} h{ }^{3}{ }^{3}$
ask 3P ask 2SFormal
ask-1S
ask-1P
ask-3S
'They ask.' 'You ask.'
'I ask.' 'We ask' 'She asks.'
a. $g o^{37} o^{32} n i^{3 h}$
b. $g o^{3} o^{32} r e^{l ?}$
c. $g o^{\underline{3} 7} o^{\frac{43}{-}}$
d. $g o^{3} o^{4}>$
e. $g o^{3} o^{3 h}$ drink 3P drink 2S
'They drink.' 'You drink.' drink-1S
drink-1P
drink-3S
'I drink.' 'We drink.' 'She drinks.'
(3)
ANT a. $g a^{2} t a^{32 h} n i^{3 h} \quad$ b. $g a^{2} t a^{32 h} r e^{l>}$
ANT-say 3P ANT-say 2 S
'They will say.' 'You will say.'
c. $g a^{2} \mathrm{ta}^{43}$ d. $g a^{2} t o^{2 ?}$
e. $g a^{2} t a^{3 h}$

ANT-say-1S ANT-say-1P ANT-say-3S
'I will say.' 'We will say.' 'She will say.'
The underlying tone base values are exhibited in the second and third person free forms, cf. (1), (2), and (3) a \& b. The fused forms are displayed in $\mathrm{c}, \mathrm{d}, \&$ e of each example. The stems can be divided in Class I, which includes stems with the values $45 / 1^{\mathrm{h}}, 4^{\mathrm{h}}, 3^{\mathrm{h}}, 23^{\mathrm{h}}, 32^{\mathrm{h}}, 2^{\mathrm{h}}, 21^{\mathrm{h}}$, and in Class II includes stems with the values $3^{?}, 32^{?}, 31^{7}$, and $1^{?}$. The examples above exemplify how the regular tone-laryngeal morphology changes for Class I in 1, for Class II in 2, and in the Anticipatory Mode in 3 (similar to English future), which we will now consider.
For Class I the base form in (1) 'ask', is achin ${ }^{45}$, which is found in the free forms for 3P and 2S.
'Ask 'for 1 S has the value $\underline{4}$, and for the 3P the form is $\underline{4}$? and finally the 3S uses the default form, i.e. 3.
For Class II, the morphology is not as regular. The base for drink, in (2) is 32 . The value for 3 P and 2 S is 32 . And, for the 1 S the values is 43 , and 1 P has a raised form of 4 ?.
The example (3) shows the how the morphological categories for say in the anticipatory mode; something like the English future. The verb say in the ANT form is 32 h . For 1S it changes to 43 and for 1 P it changes to 2 ? As usual then the 3 S is 3 h .

The data show that tone-laryngeal morphology employs laryngeal elements in parallel with the tones. And herein lies a problem for theory, how to incorporate laryngeal elements, breathy, creaky, etc. into a tone geometry, Hyman (2010:4). has said, we ought in principle to be able to capture the relation of tones to laryngeal features, e.g. voicing, breathiness, creakiness.

