Title: \quad Structural stability across methods, language families and geographic areas
Category: Oral presentation
Theme: Quantitative Linguistic Typology
Typological features vary in terms of their stability (Wichmann \& Holman, 2009; Dediu, 2011), as do meanings in the basic vocabulary (Pagel et al., 2007) and biological genes (Woese et al., 1990). This talk will address the patterning of these differences in stability across language families, methods of estimation, and geographical areas, using advanced quantitative methods.

First, the talk will show that despite the large number of conceptualizations and ways of estimating structural stability, there is a general agreement across very different quantitative methods in what features tend to be stable and which not (Dediu \& Cysouw, in press). This empirical result is very important and suggests that despite the inherent complexities involved in defining structural stability, there is exists a cross-method latent characteristic that ranks features on a stability scale.

Then the focus will move on a particular such method which uses modern Bayesian phylogenetics (Dediu, 2011; Dediu \& Levinson, 2012) to estimate the stability of the structural features in WALS across as many language families as possible. To guard against methodological and data coding biases, I used two different software implementations (the off-the-shelf MrBayes 3 widely used in evolutionary biology, and the custom-written BayesLang), two different coding of the WALS data (the original polymorphic and a binary coding) and three genealogical classifications of languages (WALS, the Ethnologue, and Hammarström's 2010 "orthodox" families). This quantitative method found that (i) there are cross-family (universal) tendencies for some structural features to be more stable than others, but that (ii) there are important inter-family differences in their ranking of features' stabilities, and, surprisingly, (iii) that there is also large-scale among-families patterning of structral stability.

The first level (i) reinforces the idea that features are differently affected by the factors driving language change across families and areas in that some features tend to be universally more stable. The second level (ii) simply shows that language family-specific factors have an important role to play. The intermediate level (iii) seems to point to deep genealogical and areal relationships between families, such as the similarity between language families within the Americas, and between those spanning the Americas and North-East Eurasia, possibly reaching to a time-depth of at least 12,000 years ago.

Taken together, these findings suggest that structral stability can be measured across methods, and that it is patterned at three levels: universal tendencies, large-scale among family, and between individual families.

References

Dediu, D. (2011). A Bayesian phylogenetic approach to estimating the stability of linguistic features and the genetic biasing of tone. Proceedings of the Royal Society B 278:474-479.
Dediu, D., \& Cysouw, M. A. (in press). Some structural aspects of language are more stable than others: A comparison of seven methods. PLoS One.
Dediu, D., \& Levinson, S. C. (2012). Abstract profiles of structural stability point to universal tendencies, family-specific factors, and ancient connections between languages. PLoS One, 7:e45198.
Hammarström, Harald. (2010) A full-scale test of the language farming dispersal hypothesis. Diachronica 27:197-213.
Pagel, M., Atkinson, Q. D., \& Meade, A. (2007). Frequency of word-use predicts rates of lexical evolution throughout Indo-European history. Nature, 449:717-721.
Wichmann, S. \& Holman, E. (2009). Assessing temporal stability for linguistic typological features LINCOM Europa:Munchen, http://email.eva.mpg.de/ wichmann/WichmannHolmanIniSubmit.pdf.
Woese, C.R., Kandler, O. \& Wheelis, M.L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. PNAS 87:4576-4579.

