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■ Abstract With the completion of the human genome sequence and the advent of
technologies to study functional aspects of genomes, molecular comparisons between
humans and other primates have gained momentum. The comparison of the human
genome to the genomes of species closely related to humans allows the identification
of genomic features that set primates apart from other mammals and of features that
set certain primates—notably humans—apart from other primates. In this article, we
review recent progress in these areas with an emphasis on how comparative approaches
may be used to identify functionally relevant features unique to the human genome.

INTRODUCTION

Among the ∼300 primate species that currently live on Earth, humans are clearly
the most dominant. They achieve their dominance by an unparalleled capacity
for culture, which has allowed them to grow in number, to extend their range to
almost all regions of the planet, and to impact—for better and for worse—the lives
of many other animals, plants, and ecosystems. This begs the question of what
features caused such a huge difference in the evolutionary trajectory of humans
compared with other closely related primates.

Another aspect of human uniqueness among primates is that they contemplate
questions such as the one posed above. An important aspect of this human enquiry
into human nature is the exploration of the human genome, which culminated
in the finished human genome sequence presented in the spring of 2003. Thus,
humans as a species now have the unique challenge of understanding the functions
and origins of their own genome.

One of the most important ways to meet this challenge is to compare the human
genome with the genomes of other species. Hitherto, the limited availability of
complete genome sequences confined such comparisons to species such as mice,
fish, flies, and worms, which are all distantly related to humans and allow genomic
features to be identified due to their conservation over long times. Such features
are relevant to understanding what is common to all mammals, all vertebrates,
or all animals, but uninformative with regard to what is unique to primates. It
is especially uninformative with respect to what most interests the congenitally
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narcissistic human species, i.e., “what sets us apart from other species?” This
situation is changing with the imminent completion of a draft sequence of the
chimpanzee genome, which will allow us to list most genomic features by which
we differ from our closest relative among primates. Thus, we are at the wake of a
new era that will allow us to explore the comparative genomics of primates. Below
we summarize some evolutionary aspects of our current knowledge of primate
genomes, and we are painfully aware that this review will likely become obsolete
faster than most reviews in the rapidly changing field of genomics. However,
perhaps one day, after its short period of possible relevance, it may be of interest
to historians as a document of our monumental ignorance at this point in time.

PHYLOGENIES

To understand how the structural and functional features of genomes evolve, it
is of paramount importance to know how the species carrying the genomes are
related to each other, i.e., their phylogeny.

Primates are generally classified into groups for which there is evidence that
their ancestry traces back to a single common ancestor. The six major goups are:
lemurs that live on Madagascar; loriformes, such as the galagos, that live in Africa
and Asia; tarsiers that dwell on the islands of southeastern Asia; New World
monkeys; Old World monkeys; and hominoids, i.e., apes and humans (38). The
apes include the gibbons and orangutans in Asia, and the gorillas, chimpanzees, and
bonobos in Africa. The phylogeny of these groups is generally accepted (Figure 1).
Only the tarsiers are controversial because of the support for a closer relationship
between them and the common ancestor of Old and New World monkeys and apes
has been found (49, 103), as well as support for a common ancestry of tarsiers and
the lemurs (93). Because three Alu elements were found at the same sites in the
genomes of tarsiers, New World monkeys, and Old World monkeys, a common
ancestry of these groups seems more likely (116). From a human perspective, our
closest relatives are the apes, followed by the progressively more distant relatives:
the Old Word monkeys, the New World monkeys, the tarsiers, and the lemurs.

Among the apes, the African apes are more closely related to humans than the
gibbons and orangutans. For example, in 1863, Thomas Huxley (59) stated that
“it is quite certain that the Ape which most nearly approaches Man, in the totality
of its organization, is either the Chimpanzee or the Gorilla.” However, whether
chimpanzees or gorillas are closer to humans, or whether the human lineage split
off before the gorilla and chimpanzee lineages separated, remained unclear for a
long time. Because DNA sequences from different parts of the genomes of humans
chimpanzees and gorillas are now available, one can address this question from a
genomic perspective [for an introduction to phylogenetic analyses, see, e.g., (96)].
For example, out of 53 short intergenic, ∼500-bp long DNA sequences, 31 support
the human-chimpanzee group, 10 support the human-gorilla group, and 12 support
the chimpanzee-gorilla group (15). In most cases, the analyses of longer DNA
sequences indicate that chimpanzees and humans share a more recent ancestor,
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Figure 1 Phylogeny of a few primate species according to Goodman (48). Estimates
of divergence times are from Goodman (48), except for the divergence times between
humans and the great apes, the Old World monkeys, and the New World monkeys (46)
and the chimpanzee-bonobo split (140). Note that these are divergence times of DNA
sequences and that species divergences can be considerably smaller (see Figure 3).

but a few indicate other phylogenies (e.g., 113). The reason that most regions
of the genome indicate a human-chimpanzee relationship, whereas other regions
indicate the other two possible phylogenies, is probably that the gorilla lineage
diverged shortly before the lineages of humans and chimpanzees diverged. There-
fore, polymorphisms in the ancestral population of all three species could persist
from the first divergence to the second divergence. The random fixation of these
alleles in the three lineages led to a situation where different nucleotide positions
in the three species are related by different phylogenies (Figure 2). The smaller
the genetic distance between two nucleotide positions, the higher the probability
that they will share the same phylogeny. Thus, single genes tend to support one
phylogeny and the human genome as a whole can be seen as a “mosaic,” in that
different regions are differently related to chimpanzees and gorillas.

The close phylogenetic relationship between humans and both chimpanzees
and gorillas means that the true phylogeny can not be known for any particular
genomic region if its phylogeny has not been analyzed in the context of at least one
species in addition to humans, chimpanzees, and gorillas. When comparing the
human and chimpanzee genomes, the ancestral state cannot be reliably inferred
using the gorilla as an outgroup. A species more distantly related to humans and
the African apes needs to be used. The closest possibility is the orangutan, whose
lineage branched off so long ago that any region not affected by special phenomena
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Figure 2 Illustration of how ancestral polymorphisms can lead to a gene tree that is
different from the species tree. The genealogy of a neutral polymorphism is depicted.
The ancestral allele C mutates to A, and the A/C polymorphism segregates in the
ancestral population of humans, chimpanzees, and gorillas (1) and is still segregating
in the ancestral population of humans and chimpanzees (2). Whereas the C-allele
becomes fixed on the gorilla lineage (3) and the human lineage (4), the A-allele gets
fixed on the lineage leading to the chimpanzee (5). Therefore, the common ancestor of
the site is more recent for humans and gorillas, and the gene tree is different from the
species tree.

such as balancing selection is expected to represent a true outgroup to humans and
chimpanzees

Divergence Times

The estimation of divergence times between primate groups is more controversial
than the phylogeny, largely due to the uncertainties associated with fossil cali-
bration points. For example, the divergence of the lineage leading to lemurs and
the lineage to all other primates has been dated to 63 mya (49) or to 80 mya
(118). Using two different fossil calibration points and testing several statistical
methods, Glazko & Nei (46) estimated the divergence times between humans
and other primates. According to them, the human lineage diverged from that of
the chimpanzee approximately 5–7 mya, that of the gorilla 6–8 mya, that of the
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Figure 3 The divergence time of two orthologous DNA sequences consists of the
time when the sequences segregated in the ancestral population (1) and the time after
the species split (2). Thus, divergence times of DNA sequences always predate the
species split. This can constitute a substantial fraction of the divergence time when the
species split is recent and the ancestral population is size large.

orangutan 12–15 mya, that of Old World monkeys 21–25 mya, and that of New
World monkeys 32–36 mya (Figure 1). These dates are in accord with previous
studies (e.g., 15, 48), even if they are disputed by some (2). The divergence times of
DNA sequences from bonobos and chimpanzees are less well dated and range from
0.9 million years (65) to 2.5 million years (43), with the largest dataset collected
so far suggesting 1.8 million years (141).

One issue often not considered when estimating the divergence times of closely
related species such as humans and the great apes is that the divergence of a
DNA sequence is composed of the time after the species split as well as the
time before that when the two sequences segregated in the ancestral population
(Figure 3). If the split time is recent, and the ancestral population size is large, the
divergence times of DNA sequences is substantially larger than the divergence of
the species (109). For example, the ancestral effective population size of humans
and chimpanzees is estimated to have been four to seven times larger than the
current effective human population size of ∼10,000 (126). Considering this, the
time of the species divergence of humans and chimpanzees has been estimated
to 2.9–4.3 mya (126). Similarly, an estimate of the population divergence time of
bonobos and chimpanzees suggests a divergence time of 0.8 million years, which
is not much different from the divergence estimates of 0.4–0.65 million years
between the populations of chimpanzees in central Africa and western Africa
(37). Note that these estimates are based on a model in which populations are
immediately isolated. If gene flow occurs between populations for some time,
this would overestimate the size of the ancestral population and underestimate the
divergence time (126).
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Molecular information is available about one extinct primate group’s phyloge-
netic relationship and divergence from humans. The Neandertals lived in Europe
and western Asia until about 30,000 years ago, when they disappear from the fossil
record. Thus, they are the group most closely related to contemporary humans. De-
termining the mitochondrial DNA sequences from four Neandertals (73, 74, 102,
117) has shown that they carried mitochondrial DNA sequences that fall outside
the variation of modern humans and that diverged a little more than 500,000 years
ago. This fits well with archaeological and paleontological estimates of a diver-
gence between anatomically modern humans and Neandertals more than 350,000
years ago (8). However, just because Neandertals did not contribute mitochondrial
DNA to the contemporary human gene pool does not preclude that they might have
contributed other genes. A recent study of several Neandertals and early modern
human remains concluded that the Neandertal contribution to the early modern
gene pool is limited to 0% to 25% (117a). Thus, although there is no positive
genetic evidence for any interbreeding between humans and their closest extinct
relatives, it can not be excluded that it took place to some extent.

Intraspecific Diversity

There are vast amounts of data on intraspecific genetic diversity of humans. By
comparison, few studies have been devoted to the genetic diversity of chimpanzees
(e.g., 20, 37, 43, 45, 65, 70, 120, 141), and even fewer to gorillas, orangutans (20,
43, 66), and other primates.

What is clear is that humans differ from chimpanzees, gorillas, and orangutans
by being less diverse (for reviews, see 63, 64). Only bonobos may carry about as
much, or a little more, diversity than humans (21, 65, 141). Thus, humans differ
from almost all the apes by having low levels of intraspecific diversity (Figure 4).
This is surprising because humans are orders of magnitude more numerous than the

Figure 4 Gene tree of a X-chromosomal region (66). The number
of chromosomes analyzed is given in parantheses. Figure is modified
from Kaessmann et al. (66).
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great apes. It is also surprising given the fact that humans are distributed over the
entire world whereas apes are more restricted in their distribution. One explanation
is that humans go back to a small population that expanded in the relatively recent
past (53). However, other factors such as mating systems and population structure
might also play a role.

An observation compatible with a recent human expansion from a small popula-
tion is that humans have little genetic differences between populations whereas ape
populations differ a lot. For example, the difference between chimpanzees from
central Africa and chimpanzees from West Africa is three to four times greater
than the differences among human continental populations (37). There is a similar
trend—although supported by less data—in gorillas and orangutans (64).

Splitting or Lumping Primates?

In conjunction with the extent of genetic differentiation seen between populations,
there is frequent discussion of the classification of various regional populations
of apes into subspecies or even different species. Two trends occur among scien-
tists interested in such classificatory issues. Some argue that gorillas, for example,
should be split into different species based on behavioral, ecological, and ge-
netic differences. A reflection of this trend is the increasing number of recognized
African primate species from 63 to 79 in the last decade (50). Conversely, others
stress the great similarity between humans and chimpanzees and suggest the fusion
of humans and chimpanzees into one genus containing the species Pan sapiens,
Pan troglodytes (chimpanzees), and Pan paniscus (bonobos) (135). Although the
former stress the uniqueness of different ape populations, often in a laudable zeal
to argue for their protection, the latter stress our close evolutionary connection to
the apes, also often to argue for their protection.

In our opinion, so-called subspecies of chimpanzees, gorillas, and orangutans
share closely related or even identical genomic DNA sequences in parts of their
genomes (64). Thus, they are not genetically distinct in any absolute sense. From a
genomic perspective, it is not clear if it is sensible to regard them as subspecies or
even species, as some advocate (e.g., 145). In fact, various ape populations carry no
or very marginal differences in their appearance and behavior when compared to the
corresponding differences seen in humans from different continents. Because there
is no good reason to talk about subspecies or species for humans, it seems absurd
to use these categories for apes. In the end, the discussion of such classifications
itself has limited biological relevance even if they may have profound political and
legal implications.

GENOME EVOLUTION

Hitherto, our understanding of the evolution of primate genomes has been severely
hampered by a lack of data from nonhuman primates. However, this is now chang-
ing as more and more DNA sequences from primates are accumulating. Most
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excitingly, the call for primate genome projects (e.g., 89, 124) has materialized
with the sequencing of the genome of a common chimpanzee and the rhesus
macaque to follow (63). Other large-scale efforts include the private attempt to
sequence more than 200,000 protein-coding exons in the chimpanzee (18), the
chromosome 21 ortholog in the chimpanzee (129), the more than 100,000 end
reads from a chimpanzee bacterial artificial chromosome (BAC) library (40), the
chimpanzee’s MHC class I region (1), and the parts of the chimpanzee’s Y chromo-
some (111). In addition, BAC libraries from 13 nonhuman primates are available
(http://bacpac.chori.org/) (25) and are used, for example, by the comparative ver-
tebrate sequencing initiative (http://www.nisc.nih.gov/).

The availability of genome sequences from the chimpanzee and other primates
will greatly increase our knowledge of how genomes, chromosomes, and genes
evolve over relatively short evolutionary timescales. This is important because
knowledge about these phenomena forms the basis for identifying functionally
conserved genomic features as well as functionally relevant genomic changes
among primate species (see below).

Chromosome Evolution

Karyotypes have changed little during primate evolution (e.g., 92), although some
groups, such as gibbons, owl monkeys, or lemurs (99), show faster rates of chro-
mosomal reorganization. The human and chimpanzee karyotypes differ by 10
euchromatic rearrangements seen by G-banding: the telemore fusion of two chro-
mosomes resulting in human chromosome 2 and nine pericentric inversions (142).
This fusion site (33), as well as a few other rearrangement sites (e.g., 68, 83),
were mapped at the molecular level, but no obvious functional consequences were
detected.

Chromosomal rearrangements could promote speciation by several mechanisms
(107). Navarro & Barton recently proposed a model where the blocked gene flow in
rearranged chromosomal regions would facilitate the evolution of alleles compat-
ible within—but incompatible between—species (94). This model was supported
by the finding that ratios of amino acid substitutions to silent substitutions (ka/ks
ratios, see below) between human and chimpanzee genes were higher in rearranged
chromosomes than in nonrearranged chromosomes, indicating more occurrences
of positive selection on rearranged chromosomes (95). However, this finding was
likely caused by the biased set of genes analyzed (86). Thus, the role of chromo-
somal rearrangements for speciation in primates remains unclear.

Segmental Duplication

About 5% of the human genome is located in so-called segmental duplications
(3), i.e., relatively large (1- to >200-kbp) regions that are present in at least two
copies per haploid genome and are 90% to 100% identical to each other (reviewed
in 114). Among the fully sequenced genomes, the human genome has the highest
amount of segmental duplications. For example, only ∼2% and ∼3% of the mouse
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and rat genome, respectively, is found in segmental duplications (6a, 16, 123a). It
has been suggested that the increased spread of retroposed copies of Alu elements
in the ancestor of Old World monkeys and New World monkeys (see below)
facilitated the expansion of segmental duplication by recombination between Alu
elements. Once established, the duplications may facilitate further recombination
due to their high level of sequence similarity (4). There are several reasons why
segmental duplications are relevant when comparing primate genomes. First, due
to their high sequence identity and large size, segmental duplications are difficult
to correctly identify and localize in a genome (5, 77). Second, they can lead to the
alignment of paralogous, instead of orthologous, regions, i.e., the comparison of
regions that share a common ancestor due to a gene duplication instead of due to a
speciation event. Indeed, a lower divergence between humans and chimpanzees has
been found when omitting comparisons in duplicated regions (82). Third, it seems
that segmental duplications are hotspots for chromosomal rearrangements (119).
For example, a chimpanzee-specific inversion is located in a cluster of segmental
duplications (83), and the chromosome fusion region on human chromosome 2 is
highly enriched for segmental duplications (32). Fourth, they have the potential
to create “new” genes and could therefore play an important role for species-
specific phenotypes. For example, analysis of duplications on human chromosome
22 revealed 11 cases of transcribed genes that were created either by whole gene
duplications, were modified by segmental duplications, or contained exons derived
from different duplication events (6). The potential to generate new genes by this
process is intriguing.

Deletions of genomic regions are much less studied than duplications because
it is not possible to identify deletions by studying a single genome or by comparing
two genomes. However, the sequencing of several primate genomes and compar-
ative genomic hybridization (CGH) techniques (84) will make it possible to study
also deletions on a genome-wide scale in the near future.

Mobile Elements

Interspersed repeats derived from mobile elements that propagate either via a DNA
intermediate (DNA transposons) or via a RNA intermediate (retroposons) account
for at least 45% of the human genome (77). Especially relevant for comparisons
among primates are the two currently active retroposons, the long interspersed
element (LINE) L1 and the short interspersed element (SINE) Alu, which make
up ∼25% of the human genome (for reviews on mobile elements see 7, 23, 104).

Alu elements arose with the radiation of primates (146) and, with more than a
million copies, make up more than 10% of the human genome (77). By analyz-
ing the divergence between different subfamilies of Alu elements in the human
genome, researchers showed that the rate of Alu insertions has changed (7). Most
elements were inserted in the common ancestor of Old World and New World
monkeys when an average of one Alu insertion occurred per birth, whereas today
about one in 200 births occur in humans (22). Liu et al. observed more Alu and
L1 elements in human and baboon DNA sequences than in lemur DNA sequences,
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which suggests that a higher retroposition activity caused the genomes of humans
and baboons to be larger than that of the lemur (82). Although the rate of Alu inser-
tions has stayed relatively constant on the human lineage since the divergence from
Old World monkeys, it has increased on the baboon lineage and decreased on the
chimpanzee lineage (82). Together with more insertions of other retroposons, this
has probably caused the human genome to become 1% larger than the chimpanzee
genome (82, 129).

The insertion of mobile elements can have functional consequences by inactivat-
ing genes, inserting new coding sequences into genes, and changing the regulation
of genes (11, 12, 97). Transposing L1 elements can lead to the cotransposition
of the DNA sequence adjacent to the element and thus to exon shuffling (91).
Unequal recombination between Alu elements can cause the deletion of genes or
exons. This has been proposed for the human-specific deletion of exon 34 in the
tropoelastin gene (122). Gene conversion can also occur between different Alu
elements, and this may be responsible for the deletion of one exon in the gene
encoding CMP-N-acetylneuraminic acid hydroxylase (CMAH) in humans (54),
which led to the absence of a hydroxylated form of sialic acid in humans (17, 60).
How often insertions of mobile elements have functional consequences such as
these awaits further investigation.

Insertions and Deletions

Differences in the length of two homologous sequences (often called indels) can
arise by different mutational mechanisms such as insertions of mobile elements
(see above), deletions of a region by unequal recombination, or errors of the DNA
replication machinery that cause smaller indels. The latter type of indels is the
most frequent one (129) and is observed once per 1000 compared sites between
human and chimpanzee DNA sequences (24).

Overall, indels are responsible for a large proportion of sequence differences
between species. Using oligonucleotide arrays based on the human sequence of
chromosome 21, Frazer et al. (39) found that ∼9% of the sequence is deleted in ei-
ther chimpanzee, orangutan, rhesus macaque, or a New World monkey. Watanabe
et al. (129) identified ∼68,000 indels among the ∼3.3 million compared base pairs
of the human chromosome 21 and its chimpanzee ortholog. A lineage-specific anal-
ysis of the larger indels showed that 32 kbp were gained and 39 kbp were lost on
the human lineage, compared to 25 kbp and 53 kbp on the chimpanzee lineage.
When BAC sequences are compared between humans and chimpanzees, 2.3%
(82) to 3.4% (10) of the aligned sequence consists of indels, whereas point sub-
stitutions contribute ∼1.2% of all sequence differences. However, the mutational
mechanisms between different indels and between indels and point substitutions
are different, so a comparison of such percentages is not necessarily meaningful.

Microsatellites

Indels occur especially frequently in microsatellites [i.e., tandemly repeated short
(1–6 bp) DNA motifs], and the high mutation rate and correspondingly high
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variation of microsatellites make them useful, for example, in linkage mapping
(47) and paternity testing (125). Human microsatellites are generally longer than
their chimpanzee orthologs, which implies that the mutation process can be dif-
ferent even in closely related species (112). Although the original analysis that
this suggestion was based on was confounded by ascertainment bias (26, 132),
a recent study using 5.1 Mb of genomic DNA alignments between humans and
chimpanzees showed that at least dinculeotide repeats are on average ∼2 bp longer
in humans than in chimpanzees (132). A comparison of microsatellites between
humans and baboons suggested that this property might have changed on the hu-
man lineage and, thus, that the mutation patterns of microsatellites may change
rapidly during primate evolution (132).

Nucleotide Substitutions

Nucleotide substitutions are the most frequent type of genetic change and probably
the best-understood mutational process (27). However, comparing sequences in
closely related species such as humans and chimpanzees has the advantage of
less ambiguous alignments and less frequent multiple substitutions and, thus, one
can better discern the substitutional processes. At neutral sites (i.e., at sites where
changes do not influence the fitness of the organism), one can use the observed
substitution rate between species to estimate the mutation rate (80). Although the
mutation rate per year is relatively constant among the great apes (e.g., 15, 66,
133), evidence shows a ∼30% higher mutation rate in Old World monkeys (82,
138), a twice-as-high rate in lemurs (82), and a fivefold higher rate in mice (131).
This might partially be explained by differences in generation times between the
different species (81, 100), although the magnitude of this effect is debated (75).

Substitution rates within a genome vary at different scales from whole chro-
mosomes to the dinucleotide context (27). At the chromosomal scale, the Y chro-
mosome evolves more quickly than the autosomes, whereas the X chromosome
evolves more slowly. This is probably largely caused by a ∼fivefold higher mu-
tation rate in the male germline, where Y chromosomes spend all their time, the
autosomes spend half their time, and the X chromosomes spend one third of their
time (87). However, the autosomes also differ significantly in substitution rates
between humans and chimpanzees (24, 129), and these differences might even be
conserved in the mouse (79). The reason for this is not clear. Other factors, such
as GC content of a region (133) or the recombination rate (55), are also positively
correlated with substitution rates in primates. The conservation of such factors
may at least partly explain the differences in substitution rates at a chromosomal
scale.

Interestingly, an excess of GC to AT substitutions exists in regions of high GC
content in humans and chimpanzees (133). This means that the GC content of a
region is not in equilibrium between mutation and drift, as previously thought, but
that regions of high GC content are decreasing their GC content.

When discussing substitution rates, an important factor is the fraction of the
DNA sequence comprised of CpG dinucleotides. Because CpG dinucleotides can
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be methylated at the 5′ position of the cytosine residue, deamination results in bona
fide mispaired thymine residue. The inefficient restitution to the original sequence
of such perturbations in the DNA molecule by repair mechanisms makes CpG
sites hotspots of mutation in mammalian genomes. This is evident because 28%
of all substitutions observed between alignments of human and chimpanzee DNA
sequences are transitions at CpG sites (24). Thus, CpG sites have a 23-fold higher
transition rate than average sites It is important to consider this, for example, when
estimating mutation rates at silent sites (56, 121).

Protein-Coding Regions

Protein-coding regions are of obvious importance for the organism. They contain
sites at which mutations do not change the amino acid sequence of the encoded
protein (silent sites) and these sites evolve neutrally or nearly neutrally. This is
advantageous for analyzing protein-coding regions because the number of differ-
ences per silent sites (ks) can be used to gauge the putatively neutral substitution
rate for the gene in question. This rate can then be compared to the number of
substitutions per nonsilent sites at which mutations do change the encoded amino
acid (ka). The ratio ka/ks can thus be used to gain an overall view of the extent and
mode of selection affecting the gene. If the ratio is above one, positive selection
affected a substantial number of positions; if the ratio is close to one, the gene
evolves as if the amino acid sequence was not functionally significant; if the ratio
is below one, functional constraints limit the extent to which amino acid changes
affected the protein (for a recent review, see e.g., 35). Using this approach, ∼70%
of all nucleotide substitutions leading to amino acid changes are deleterious in
humans and chimpanzees (56).

Information about intraspecific variation adds additional value to such analyses.
For example, Fay et al. (36) used the ka/ks ratio of polymorphisms at intermediate
frequency to estimate the extent of neutral amino acid changes within humans.
They excluded rare polymorphisms because these could be slightly deleterious
and therefore not neutral. They found ∼35% more amino acid changes between
humans and Old World monkeys than expected, suggesting that a surprisingly
large proportion of amino acid differences between species would have been driven
to fixation by positive selection. However, because the genes in their dataset on
divergence and the genes used to collect the polymorphism data were not identical,
this estimate may need to be revised. Fortunately, larger datasets that will enable
researchers to perform this type of analysis on a truly genomic scale will soon be
available.

Besides nucleotide substitutions and small insertions and deletions, gene dupli-
cations, exon shuffling, retrotransposition, and gene fusions can change protein-
coding regions in a way that can allow the emergence of “new genes.” Examples
of genes that arose by such mechanisms during primate evolution are accumu-
lating (reviewed in 85). Comparing primate genome sequences will reveal how
frequently such events occur.
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Non-Genic Conserved Elements

Identifying genomic regions that are conserved between species allows the iden-
tification of regions that are functionally important outside of classical genes.
Regulatory regions are an important category of such regions (19). However, if
a regulatory function is conserved only in primates, it cannot be studied in dis-
tantly related organisms such as the mouse, but can be studied only in primates.
However, primates are relatively closely related, so functionally important DNA
sequences cannot be identified by virtue of their conservation between any two
species because nonconstrained regions have not diverged enough. Bofelli et al.
(9) recently showed how to overcome this by using “phylogenetic shadowing,”
in which many primate species are sequenced to identify DNA sequence motifs
that do not change within a group of related organisms. For example, the gene en-
coding apolipoprotein (a) (apo(a)) has orthologs only in Old World monkeys (78).
By sequencing an upstream region of the apo(a) gene in 18 Old World monkeys,
Bofelli et al. (9) identified several regulatory elements that were functionally rele-
vant for the human apo(a) gene. When several primate genomes become available,
researchers will be able to identify primate-specific conserved elements based on
this approach.

Recombination

Recombination rates vary across the genome at a megabase scale and differ between
the female and male germ lines (e.g., 71). The finding that the genetic map of the
baboon is 28% smaller than the human map (108) shows that global recombination
rates can change relatively quickly during evolution. By contrast, little is known
about how recombination rates are distributed at a fine scale across the genome and
how these frequencies change over time. In a few cases, recombination hotspots
of approximately 1–2 kbp have been defined by sperm typing (e.g., 61). Certain
alleles at such hotspots tend to initiate recombination (62). Because this leads to
the conversion of that DNA sequence to the sequence of its recombination partner
(62), hotspots may have a short half-life in the genome. The finding that two
recombination hotspots in humans are not hotspots in chimpanzees (106a, 127)
indicates that this may be true. However, we only begin to understand to what
extent recombination is localized to hot spots of this type in the genome and to
what extent it occurs at more random locations (90a). Comparing the haplotype
landscapes of human and chimpanzee chromosomes will be one way to resolve
this question.

MOLECULAR PHENOTYPES

Although linear DNA sequences are not influenced by the environment, gene ex-
pression occurs as the result of influences originating both within the organism and
outside the organism. In this respect, gene expression and associated phenomena
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such as DNA methylation and chromatin structure are similar to phenotypes such
as morphology and behavior. Thus, it is useful to think of such phenomena as
“molecular phenotypes.”

The development of microarrays has revolutionized the analysis of molecular
phenotypes in that the transcripts of essentially all genes in a mammalian tissue
can be quantitated in a single experiment. To a certain degree, arrays developed
to analyze human genes can also be used to analyze gene expression in closely
related primates. Thus, as is true for the study of DNA sequences from entire
genomes, array-based transcriptome analyses allow insights into general evolu-
tionary mechanisms. They enable the identification of genes that are outliers and
therefore potentially responsible for adaptations of the organism.

Three studies have used high-density oligonucleotide arrays to compare gene
expression profiles between humans and chimpanzees (13, 29, 67). They have
shown that many species-specific gene expression differences exist in all tissues
analyzed (brain, liver, fibroblasts, heart). Exact numbers depend on the criteria
used to define an expression difference and on the power of the particular study
to distinguish real differences from false positives. However, approximately 3–
7% of all reliably detected transcripts are expressed differently in a given tissue
(e.g., 13, 29). Environmental factors such as postmortem conditions will likely im-
pact the gene expression profile of an individual. However, at least in one dataset
(29), less than 10% of the expression differences consistently observed between
species can be explained by such factors, as indicated by permutation analyses
(W. Enard, unpublished results). Out of 169 genes identified as expressed differ-
ently between human and chimpanzee brain samples in one study, 167 showed a
qualitatively similar expression difference in another study (13). In addition, there
were species-specific differences to a similar extent between two mouse species for
which the environmental conditions were controlled as much as possible (29). This
suggests that most of the consistently observed expression differences between,
e.g., humans and chimpanzees are not caused by random or systematic differences
in the environment, and likely have a genetic basis.

A trivial genetic cause for gene expression differences are nucleotide differ-
ences between the species, leading to a lower hybridization efficiency of mRNAs
from nonhuman primates to the human arrays. Approximately 20% of the genes
identified as differentially expressed between humans and chimpanzees on the
oligonucleotide arrays could not be confirmed by independent analyses such as
Northern blots or RT-PCR (13, 29, 67). An analysis using only array oligonu-
cleotides that have no sequence difference between humans and chimpanzees
similarly suggests that hybridization differences cause ∼20% of genes to be dif-
ferently expressed (I. Hellmann & P. Khaitovich, unpublished observation). Other
possible genetic causes include gene deletions, gene duplications, differences in
alternative splicing, use of different polyadenylation sites (e.g., 13), changes in
the regulatory region of the gene, changes in RNA stability, different effective
concentrations of proteins regulating the gene, or genetic changes leading to
a different cellular composition in the tissue analyzed. The relative extents to
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which these genetic causes contribute to the observed differences are currently
unknown.

It is also unclear what proportion of interspecies expression differences have
functional consequences in that they became fixed by positive selection rather than
by neutral drift. Because recent analyses indicate that most interspecies expres-
sion differences are probably neutral (68a), the null hypothesis for any particular
expression difference should be functional neutrality. In this context it is also im-
portant to note that almost all interspecies expression differences are shared among
cerebral cortex regions, most with other brain regions, and a large fraction even
with tissues from other organs (13, 67; P. Khaitovich, personal communication).
Therefore, even if a gene expression difference is the result of positive selection,
it may have no functional consequences in the particular tissue examined.

From the data collected so far, it seems that more gene expression changes oc-
curred in the human brain than in the chimpanzee brain (29), that differences in the
brain are more often due to a higher expression in humans than are due to a lower
expression in humans (13, 51), and that more differences are observed in liver than
in brain (29, 57). More individuals and more tissues need to be examined to fully
understand how the primate transcriptome evolves. The availability of the chim-
panzee genome, the development of algorithms that detect oligonucleotides whose
hybridization are influenced by sequence differences (93a), and arrays designed
for various primate species will greatly facilitate this endeavor.

The evolution of other molecular phenotypes is of equal or even greater impor-
tance than that of the transcriptome. A first small-scale study using microarrays
to examine differences in DNA methylation suggests that CpGs might generally
be more methylated in human brains than in chimpanzee brains (28). Also, scien-
tists have taken the first steps to analyze differences in protein expression using
two-dimensional gel (29, 41). However, a global understanding of these phenom-
ena awaits the development of high-throughput approaches that allow them to be
studied at a genome-wide scale.

HUMAN-SPECIFIC ADAPTIVE CHANGES

Perhaps the most interesting application of comparisons between primate genomes
is the identification of genetic changes that have functional consequences—
especially those that may be responsible for adaptive changes in the human pheno-
type (see 14, 42, 52, 101, 124 for recent reviews). Therefore, we use humans as an
example to discuss how to identify species-specific genetic changes of functional
relevance.

Fixation

The definition of a human-specific change is that it took place on the human
evolutionary lineage and that it it occurs in all currently living humans (i.e., that it
is fixed among humans).
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Figure 5 Genealogy of a human-specific change as expected under the standard
neutral model. A genetic change can be defined as human-specific if it occurred between
time points (1) and (2). Assuming that (1) and (2) are six million and one million years
ago, respectively, a change is specific to humans in more than 80% of the cases if one
human is analyzed. Observing the change in a few humans considerably increases this
chance.

By analyzing one human and one chimpanzee DNA sequence, as well as one
or preferably more outgroups such as the orangutan and the macaque, one can
establish that a change occurred on the human lineage. That a change is fixed among
humans can be established by analyzing several humans from various regions of the
world. How many individuals need to be analyzed can be gauged from the statistical
framework provided by the coalescent theory (see e.g., 110 for a review). If the
most recent common ancestors (MRCAs) of human and chimpanzee autosomal
DNA sequences go back on average 6 million years (46), and the MRCA of human
autosomal DNA sequences is ∼1 million years old (31), a randomly genetic change
on the human lineage has a probability of more than 80% to be fixed among humans
(Figure 5). This probability increases drastically if the change is observed in several
humans. Under the standard neutral model of a randomly mating population of
constant size, the probability that n samples from the population have the same
MRCA as the whole population is (n − 1)/(n + 1) (115). Therefore 2, 10, and 100
samples have the same MRCA as the whole population in 33%, 82%, and 99%
of the cases, respectively, increasing the chance that a genetic change is fixed in
currently living humans to 86.7%, 96.4%, and 99.6%, respectively. Although these
estimates rely on simplifying assumptions, a worldwide sample of only 10 to 100
human chromosomes is enough to establish that any particular genetic variant is
likely fixed among humans.

Positively Selected Changes

The hypothesis that a change fixed in all humans is adaptive (i.e., driven to fixation
by positive selection during human evolution) is more difficult to test (see e.g., 35,
72, 98 for reviews). When comparing DNA sequences between species, positive
selection can be inferred by testing whether more changes occurred in a putatively
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positively selected category of sites than expected from the neutral mutation rate.
The most common methods of this kind are versions of the ka/ks test in which
positive selection is assumed if the rate of amino acid substitutions (ka) is greater
than the rate of neutral substitutions, as estimated from substitutions at silent sites
(ks). This test is robust against violations of demographic assumptions, but can
only detect positive selection in a lineage if it acted at several sites of the protein.
A couple of such fast-evolving genes were found in primates, many of which are
involved in reproduction and immunity (136).

The McDonald-Kreitman test (90) is a variant of this test that infers positive
selection if the ka/ks ratio between species is higher than would be expected from
the ka/ks ratio seen within the species. Using a variant of this test, Gilad et al. (45)
found suggestive evidence that positive selection acted on olfactory receptor genes
in humans but not in chimpanzees.

Yang & Nielsen (137) recently developed a method in which interspecies com-
parisons are used to estimate the number of sites under constraint. In a study that
heralds the new era of genome-wide screens for selected genes, Clark et al. (18)
used a variant of this method to analyze 7645 orthologous gene trios from human,
chimpanzee, and mouse to infer positive selection on the human lineage. They
identified 178 genes in which more amino acid changes took place on the human
lineage than expected (p < 0.01). However, because the amount of constraint is
inferred mainly from the lineage leading to the mouse, a relaxation of constraint
on the human and/or the chimpanzee lineage can also lead to a low p-value in
this approach. Nevertheless, Clark et al. identified several genes and categories
of genes that allow researchers to formulate interesting hypotheses about selected
phenotypes during human evolution.

Evidence for positive selection can also be found by studying the patterns of
intraspecific variation in DNA sequences affected by a selective sweep due to the
so-called hitchhiking effect (88). The basis of this is that DNA is inherited from
one generation to the next in blocks so that if a new advantageous allele arises
and spreads through the population, adjacent regions of DNA hitchhike with the
advantageous site. After such a selective sweep (i.e., when all individuals carry
the advantageous allele), adjacent regions have a genealogy different from what
is expected in the absence of selection (Figure 6). There are several statistical
tests that can detect the effects of a selective sweep in such data by comparing
the observed pattern to neutral expectations. For example, the Tajima’s (123) D
statistic analyzes the excess of rare DNA sequence variants created by a selective
sweep, Fay & Wu’s (34) H can detect an excess of high-frequency variants, and
the Hudson-Kreitman-Aguadé (HKA) test (58) asks whether the level of diversity
is lower than expected for a region not affected by a selective sweep. Recently,
maximum-likelihood methods that combine these different sources of information
have been developed (69, 106). They may currently be the most reliable approach
to detect selective sweeps in the human genome.

It is important to realize that violations of demographic assumptions (for exam-
ple, population growth or negative selection acting on many sites in the analyzed
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Figure 6 The hitchhiking effect of a positively selected site under the standard neutral
model. The favorable variant (black dot) (1) is advantageous in individuals carrying
it (gray squares) and spreads through the population by positive selection until be-
coming fixed (3). Recombination occurs during the sweep (2). The observed pattern
of variation in the population after such a sweep (4) differs from what is seen without
the sweep (1). For example, more low-frequency-derived polymorphisms (light gray
dots) are expected [two alleles are at 10% frequency in (1) and six alleles are at 10%
frequency in (4)]. In addition, derived polymorphisms that were on the same back-
ground as the favorable variant will get to high frequencies due to the sweep. Because
of recombination, this can lead to derived polymorphisms at a high frequency after the
sweep (arrow). Modified from a figure courtesy of Molly Przeworski.

region), can lead to false support for a selective sweep. Fortunately, increasing
amounts of information on DNA sequence variation among humans from differ-
ent genomic locations will make it possible to estimate these effects much better
in the near future and thus will increase the accuracy and the power of these tests.

A fundamental limitation of all methods based on the study of intraspecific
variation is that the signature of a selective sweep can be detected only for a short
time period after fixation of the favorable variant. Under certain simplifying as-
sumptions, a fixation that happened more than 8000 generations or ∼200,000 years
ago will not likely be detected in humans (105). Nevertheless, the first example of
a human-specific selective sweep could recently be identified in the FOXP2 gene,

A
nn

u.
 R

ev
. G

en
om

. H
um

. G
en

et
. 2

00
4.

5:
35

1-
37

8.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

W
IB

64
17

 -
 M

ax
-P

la
nc

k-
G

es
el

ls
ch

af
t o

n 
03

/2
2/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



26 Jul 2004 16:21 AR AR223-GG05-13.tex AR223-GG05-13.sgm LaTeX2e(2002/01/18) P1: IKH

COMPARATIVE PRIMATE GENOMICS 369

in which the analysis of human sequence variation next to two human-specific
amino acid changes demonstrated that a selective sweep likely occurred (30, 143).
Because FOXP2 is the first gene known to specifically affect the development of
speech and language in humans (76), it is possible that the selected phenotype was
related to speech and language.

Hypothesis Testing?

So far, single genes have been tested for positive selection, generally because they
are involved in a phenotype that was known or assumed to have been selected. The
availability of complete genome sequences will soon offer the new and exciting
possibility to screen whole genomes for genes under positive selection based both
on interspecies comparisons and intraspecific variation (e.g., 18). As with other
discovery-driven approaches, this will produce lists of candidate genes. These can
be used to generate hypotheses about selected phenotypes based on the known
functions of the genes. However, direct tests of such hypotheses are generally
impossible because transgenic techniques are currently not available in any primate
species. In fact, ethical concerns might also prevent this in the future. Therefore,
the challenge is to develop ways in which circumstantial evidence for hypotheses
regarding primate phenotypes can be gathered in vitro and in other model organisms
such as the mouse. This is going to be difficult. However, examples such as the
duplication and point mutations in opsin genes that are coupled to the evolution
of trichromatic color vision (e.g., 139), and the duplication of the RNAse1 gene
and the subsequent adaptations of one copy to digest bacterial RNA in the foregut
of leaf-eating monkeys (144), show that important insights can be gained from
circumstantial evidence.

In this context, direct evidence for a hypothesized phenotypic change on the hu-
man evolutionary lineage can be obtained if scientists can find human individuals
carrying back mutations to the ancestral state. In principle, the human population
is large enough for this to be accomplished. For example, the frequency of transi-
tional substitutions between humans and chimpanzees is 0.0087 (24). Assuming
11 million years of divergence between humans and chimpanzees and a generation
time of 20 years, this results in a back mutation rate of 1.58 × 10−8 per generation
for a human-specific transition. Among 6 billion people, one expects 190 novel
back mutations to occur per generation. It will not be easy to find an individual with
a particular back mutation, but it is comforting that natural variation in humans
is large enough to allow some hypotheses about the functional consequences of
human-specific changes to be directly tested, at least in principle.

OUTLOOK

In the nearer future, the comparison of primate genome sequences will open numer-
ous novel perspectives. First, the comparison of closely related primate genomes
will enable the development of realistic models for how various types of genomic
changes such as indels, gene inactivations, or gene transpositions occur. It will also
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be possible to develop models for substitutional changes that take into account the
mutation spectrum in different genomic regions and on different evolutionary lin-
eages. Such models will allow the identification of individual genomic events that
are exceptional and thus likely candidates for positive selection. Second, as the
efficient integration of different genomic data on gene expression, DNA sequence
variation, and functional annotation of genomes progresses, the power to detect
genetic changes that are relevant to the phenotype will increase. Third, progress in
other fields will increase the knowledge of how genomic changes cause phenotypic
changes. Thus, we will increasingly be able to interpret how genetic differences
observed between primate species may affect the organism.

As this work proceeds, things other than the availability of genome sequences
will start to limit progress. Perhaps the largest limitation will be the dearth of truly
comparative studies of the phenotypes of humans and the great apes. For example,
there are indications that chimpanzees are less susceptible for epithelial neoplasms
(124), but rigorous studies are lacking mainly through the limited number of older
chimpanzees analyzed. Clearly there is a need for more extensive comparative
studies of relevant phenotypes, as was recently proposed (124a). It will be important
that cognitive scientists, primatologists, and geneticists work together to design
studies that are comparative in nature and amenable to genetic interpretation.

Once genes that carry differences of possible importance for a human-specific
trait are identified, a serious limitation will be that there are—per definition—no
animal models available for the study of human-specific traits. Possible approaches
to these questions will include cell culture systems, transgenic mice, and perhaps
large screens for back mutations in humans. It is encouraging that relevant insights
into, e.g., human neurological diseases can be gained from animal models (130).
Nevertheless, a huge challenge will be to design models for human-specific traits
in experimental systems such as the mouse.

Last but not least, a serious limitation to our ability to perform comparative phe-
notypic work of human-specific traits is that the survival of all great apes in the wild
is acutely threatened (128). This is not only a tragedy for the apes and for humans
who enjoy seeing and studying them in the wild, it severely limits our ability to de-
fine the scope of the variability of their cultural and cognitive abilities. Ape popula-
tions vary greatly in behavior, and these differences are transmitted from generation
to generation as cultural traditions (134). Most likely, these traditions developed
over hundreds or even thousands of years. This means that to truly understand some
of the most interesting aspects of the similarities and differences between humans
and apes, it is important that apes exist in varied and undisturbed environments. Is
it possible that the increasing interest in the genomes of primates can result in an
increased support for the conservation of their African and Asian habitats?
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