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Human organomics: a fresh approach to understanding human
development using single-cell transcriptomics
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ABSTRACT
Innovative methods designed to recapitulate human organogenesis
from pluripotent stem cells provide a means to explore human
developmental biology. New technologies to sequence and analyze
single-cell transcriptomes can deconstruct these ‘organoids’ into
constituent parts, and reconstruct lineage trajectories during cell
differentiation. In this Spotlight article we summarize the different
approaches to performing single-cell transcriptomics on organoids,
and discuss the opportunities and challenges of applying these
techniques to generate organ-level, mechanistic models of human
development and disease. Together, these technologies will move
past characterization to the prediction of human developmental and
disease-related phenomena.
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Introduction
Understanding how multiple different cell types come together to
build an organ has been a long-standing fascination in
developmental biology. Over the years, we have learned much
with regard to the molecular events that instruct cell lineage, the
specific growth factors that are required, and the morphological
aspects that drive organ development. Most of this knowledge has
been gained from studying non-human vertebrate organogenesis;
however, the observation that differences exist between how organs
are formed across a range of species has led us to question what it is
that makes us uniquely human. The revelation that human
pluripotent stem cells can self-organize into three-dimensional
structures that contain multiple differentiated cell types organized to
resemble primary human tissue has revitalized the field of human
developmental biology (McCauley and Wells, 2017). In general,
these structures are referred to as organoids, and protocols have been
developed to generate gut, kidney, liver bud, multiple regions of
the human brain, and other tissues (McCauley and Wells, 2017).
Conventional strategies to analyze human organoid development
often assess cell composition and differentiation using
immunohistochemistry of a limited set of marker proteins, or cell
tracking via a reporter gene. Because organoids are, by definition,
composed of many different cell states and often show large
organoid-to-organoid variability, high-throughput single-cell
transcriptomics represents an exciting strategy to assess cell
composition, lineage relationships, and gene networks in
organoids. In this Spotlight article, we discuss how human

organomics, by which we mean the application of functional
genomics to study human organ development at the single-cell
level, can be applied to organoids in order to improve our
understanding of human development. We focus on single-cell
RNA sequencing (scRNA-seq), summarizing some of the
commonly used methods and their advantages and limitations.
We further discuss how we envisage improvements in single-cell
transcriptomic methodology will enhance our comprehension of
human developmental biology and disease. For a full glossary of
technical terms and acronyms used throughout this article, please
see Box 1.

Single-cell transcriptomics: one technology, many methods
Capturing RNA from single cells
Starting from a solid tissue, the general strategy of each scRNA-seq
approach is to first dissociate the tissue into a single-cell suspension,
then capture individual cells into isolated compartments, lyse the
cells, prepare amplified cDNA from the RNA (usually mRNA) and
at the end generate a multiplexed sequencing library, whereby all
cDNA molecules from one individual cell contain the same unique
sequence called a cell barcode. Existing single-cell transcriptomic
methods differ in the way single cells are captured and
compartmentalized, the way amplified cDNA is prepared and the
way cell barcodes are introduced into the cDNA molecules. In this
section, we summarise the most common methods for cell capture,
for preparation of the cDNA and for cell barcoding. For greater
detail on each capture and chemistry method, we refer the reader to
two recent reviews (Kumar et al., 2017; Kolodziejczyk et al., 2015).

There are multiple platforms to perform cell capture, including
valve-based microfluidics (Fluidigm C1 or home-built chips),
droplet-based microfluidics [Drop-seq, inDrop, commercial brands
Chromium (10x Genomics) and BDTM Resolve System (BD
Genomics)], sorting single cells into wells of a multi-well plate
(Smart-seq1/2, MARS-seq, CEL-seq2, SCRB-seq) or randomly
dispensing cells into wells on microwell plates (commercial brand
WaferGen), and each platform has its own advantages and
drawbacks. Once individual cells are isolated, cDNA is usually
generated by reverse transcription priming off the poly-A tail of
mRNA. The resulting cDNA can then be amplified, either
exponentially in a PCR reaction (Drop-seq, Smart-seq1/2, STRT-
seq, SCRB-seq) or quasi-linearly through in vitro transcription
(CEL-seq1/2, inDrop). The PCR-based method Smart-seq2 is based
on template-switching reverse transcriptases that ensure the
generation of full-length cDNA and sequencing across the entire
transcript (Picelli et al., 2013). Most other methods only sequence
the 3′ or 5′ end of transcripts, which allows for attachment of unique
molecular identifiers that enable individual molecules to be counted
(STRT-seq, Drop-seq, inDrop, SCRB-seq, CEL-seq, MARS-seq)
rather than estimating mRNA abundance by normalizing against
mapped reads. In all cases, a major challenge in cell capture is to
generate a suspension such that the cells are mostly viable singlets.
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Numerous variations in enzymes, dissociation times, the method of
titration, and so on should be tried in order to optimize the
dissociation step. Additional consideration must be given to the
possible enrichment or exclusion of certain cell types in some
dissociation protocols, as well as the fact that the very nature of the
protocol might alter the transcriptome of a cell. In the brain, for
example, the differential fragility of cell types upon tissue
dissociation to single cells means that the collection and profiling
can be biased towards the more robust cells, such as astrocytes and
neural progenitors. This is also a problem when using scRNA-seq to
determine the identity of the cells present, as fragile cells might
express markers of cell death, or cells can become activated during
tissue disruption. Finally, some cell types, for example pancreatic
cells, might contain enzymes that impact cDNA synthesis from
lysed single cells. Methods to sequence transcriptomes from single
nuclei provide an attractive strategy to combat the problem of
differential fragility and perturbation of gene expression during the
RNA capture stage, as nuclei are relatively robust and can be easily
purified by FACS (Habib et al., 2016).
With all of these methods available, which should biologists

choose to study organoid development at the transcriptional level?
Three key variables to consider are the number of cells to be
sampled, the sequencing depth (that is, the number of reads or
transcripts per cell), and the coverage across the transcriptome. To
analyze allele-specific expression or alternative splicing, one should
choose a method that gives whole-gene coverage, for example
Smart-seq2. This increased coverage across the transciptome comes
at a cost, however, because many sequencing reads are needed for
the same gene, which limits cell throughput. Nonetheless, this
method has a very high sensitivity and accuracy relative to other
methods. High cell throughput is crucial in order to reconstruct
organoid development for a single organoid and compare across
organoids, induced pluripotent stem cell lines, conditions, or
individuals. From a sequencing perspective, cell throughput can be
enhanced by sequencing only the end of the transcript (Jaitin et al.,
2014). This will of course be dependent on the types of cells and
degree of heterogeneity within an organoid. For plate-sorting,

manual labor can be reduced by employing liquid-handling
robotics. The droplet-microfluidics approaches are striking
improvements over previous technologies, dramatically increasing
cell throughput through decreasing cost-per-cell and manual labor
(Klein et al., 2015; Macosko et al., 2015). There are other high-
throughput approaches on the horizon based on combinatorial
indexing of cellular and nuclei RNA that are likely to compete with
droplet-based methods (Rosenberg et al., 2017 preprint; Cao et al.,
2017 preprint). One should note that high-throughput approaches
often detect fewer genes per cell than high-coverage strategies, and
might therefore miss any heterogeneity that is defined by only a few
genes or by genes expressed at a low level. To circumvent this
limitation, it might be possible to aggregate gene expression across
all cells in a cluster and generate mean transcriptomes to reach the
sensitivity of high-coverage technologies.

Defining the cellular composition of organoids
The power of single-cell transcriptomics lies in its ability to identify
molecularly distinct cell types within a complex tissue without any
prior purification of cell types. This depends to a large extent on the
computational approaches that are used to identify different cell
populations. Principal component analysis (PCA) is widely used to
identify genes that vary across the sampled single cells. Cell
relationships can then be visualized in two-dimensional space based
on the expression of these genes, for example using tSNE or force-
directed graphs, and clustered using a variety of different
algorithms, such as BackSPIN, K-means and others (Kumar
et al., 2017; Kolodziejczyk et al., 2015). A major challenge in
deconstructing cell composition is to understand the source of
heterogeneity in the dataset. Technical noise, most prominently
‘dropout’ due to inefficient capturing of mRNA and batch effects,
can confound the analysis and obscure true biological noise. There
are strategies to combat technical noise and remove confounding
variables such as cell cycle state (Stegle et al., 2015). In addition, it
is often unclear what constitutes a cell type and how to define
discrete cell types versus continuous cell states. As a result, there is
no definitive resolution on where to draw the line between different
cell states. It is essential to iteratively explore the data using multiple
approaches to fully understand the sources of heterogeneity within a
dataset. Also, in order to identify rare cell types, many thousands of
cells must be analyzed, or rare cell types need to be enriched using
FACS, density gradient centrifugation or other approaches. As
noted above, these methods of dissociation might enrich or exclude
certain cell types from the suspension; therefore, it is generally
unclear whether scRNA-seq can be trusted to quantify cell type
abundance.

Reconstructing lineage relationships within an organoid
Organoids contain immature and mature cells on the same
differentiation lineage. scRNA-seq provides a snapshot of the
transcriptome states present in a tissue at any given moment. In a
recent study of human fetal and organoid cortex, scRNA-seq
detected the presence of intermediate cells that could be aligned to
reconstruct a lineage path from progenitor to neuron (Fig. 1) (Camp
et al., 2015). Therefore, a great power of this technology is to infer
lineage trajectories through the presence of intermediate states. This
has led to the generation of various computational models that try to
align cells in a pseudotemporal order, and the expression of genes
can be monitored as a function of pseudotime (Trapnell et al., 2014;
Setty et al., 2016; Haghverdi et al., 2016). In addition, it is also
possible to detect lineage bifurcations where a common progenitor
gives rise to two or more differentiated cell types.

Box 1. Glossary of technical terms and acronyms
BackSPIN. Divisive biclustering method based on sorting points into
neighborhoods (SPIN).
CEL-seq. Cell expression by linear amplification and sequencing.
CRISPR. Clustered regularly interspaced short palindromic repeats.
Drop-seq. Droplet-based sequencing.
FACS. Fluorescence-activated cell sorting.
Fluidigm C1. Commercial valve-based microfluidics platform for single-
cell genomics and transcriptomics.
Force-directed graph.Class of algorithms used to draw network graphs
in two- or three-dimensional space.
inDrop. Indexing droplets.
Intercellularcorrelationnetwork.Graphwhere nodes (cells) andedges
(correlation between single-cell transcriptomes) show cell relationships.
K-means. Clustering method partitioning a dataset into clusters by
minimizing the Euclidian distance between each data point and the
center of the cluster it belongs to.
MARS-seq. Massively parallel RNA single-cell sequencing framework.
SCRB-seq. Single-cell RNA barcoding and sequencing.
scRNA-seq. Single-cell messenger RNA sequencing.
Smart-seq. Popular method for full-length transcriptome sequencing of
single cells.
smFISH. Single-molecule fluorescence in situ hybridization.
STRT-seq. Single-cell tagged reverse transcription sequencing.
tSNE. t-distributed stochastic neighbor embedding.
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Challenges and opportunities in human organomics
Lineage-coupled transcriptomics
Current methods for understanding lineage decisions using
scRNA-seq do not provide direct evidence of lineage
relationships, as lineages are reconstructed through overlapping
patterns of gene expression in cells at intermediate stages. There are
multiple methodological advances that could enable the tracing of
direct lineage relationships using single-cell transcriptomics in
organoids. One strategy is to use viral libraries to infect cells,
expressing in each cell a reporter with a unique barcode (Gerlach
et al., 2013). Single-cell transcriptome measurements from these
cells would include the lineage-defining barcode as well as the
transcriptome. Another strategy is to induce targeted DNA
mutations using CRISPR/Cas9 to create unique patterns of
insertions and deletions, known as scars, which would serve as
cell-specific markers that are transmitted to daughter cells
(McKenna et al., 2016). Lineage and transcriptome information
can be read either by sequencing DNA and RNA from the same
cell, or by creating the mutations in an expressed gene, for example
an integrated fluorescent reporter, and only sequencing the
transcriptome (Junker et al., 2017 preprint).

Spatial transcriptomics
Current widely used scRNA-seq methods require dissociation of
tissue into single-cell suspensions to compartmentalize cells for
barcoding. However, this approach loses spatial resolution. Recent
reviews have explained how multiple labs have demonstrated
transcriptome-scale measurements of RNA abundance within
tissues (Tanay and Regev, 2017; Crosetto et al., 2015). One
approach for spatially resolved single-cell transcriptomics is to
combine scRNA-seq data with reference maps generated by
traditional in situ hybridization. Another approach uses sequential
rounds of smFISH with sophisticated combinatorial fluorescent
barcoding to quantify the expression of tens to hundreds of genes
in situ (Shah et al., 2016). An additional strategy is to position
histological sections on arrayed reverse transcription primers with
unique positional barcodes, thus generating RNA-sequencing data
with two-dimensional positional information maintained (Stahl et al.,
2016). These approaches reveal the location of distinct cell types, and
offer powerful advantages over dissociation-based methods. Because
organoids are relatively heterogeneous and can lack a stereotyped
developmental axis, localizing transcriptomes within tissue
architecture will be very useful. The technical difficulties and

expertise required for spatial transcriptomics have hampered their
wide adoption; however, this could change over the coming years.

Beyond cell atlases:mechanisms of human development and disease
A major goal in human single-cell transcriptomics is to generate a
comprehensive and quantitative reference ‘atlas’ of every human
cell type in both adult and fetal tissues. A human cell atlas will
provide a reference for comparison with organoids to understand
how cell composition and gene networks are recapitulated in these
in vitro models. In addition, fetal human cell atlases could provide
strategies to reverse engineer human tissues by identifying
transcription factors specific to certain cell types, and bring
insight into cell-cell communication through the identification of
putative receptor-ligand pairs. Furthermore, comparisons between
diseased human tissue and the atlas will help elucidate disease
mechanisms at cellular resolution, and might even discover ‘new’
human cell types. However, surveys such as these describe
phenomena, whereas human organoids offer the possibility of
uncovering regulatory mechanisms through the exploration and
perturbation of developmental processes within a controlled
environment. As such, high-information content measurements
and sophisticated computational approaches position scRNA-seq as
a powerful instrument to infer developmental mechanisms, which
can then be tested. Comparisons between organoids generated from
healthy and diseased individuals using high-throughput, spatial, and
lineage-coupled transcriptomics will be able to localize network
aberrations and identify disregulated genes. Recently, high-
throughput scRNA-seq has been coupled with CRISPR/Cas9
mutagenesis to explore network robustness (Jaitin et al., 2016;
Dixit et al., 2016; Adamson et al., 2016). We believe that this
combination of technologies will provide enormous insight into the
regulation of cell differentiation, cell communication, tissue
organization, and response to environmental variables during
human development.

Conclusions
Human organoids are manipulable, genetically and otherwise, a
feature once reserved for classical model systems such as yeast,
worms, flies, fish and mice. As a technology, however, in vitro
organogenesis is still in its infancy, and in many cases it is unclear
exactly what cell types are present within organoids and whether
each cell type can be created in a reproducible manner. scRNA-seq
will help to address this uncertainty, providing a greater depth of
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Fig. 1. Human organomics: reconstructing organoid development using scRNA-seq. (A) scRNA-seq comparisons between fetal human tissue and
organoids bring insight into how well organoids recapitulate human development. As an example, scRNA-seq was used to analyze human fetal neocortex and
cerebral organoids (Camp et al., 2015). An intercellular correlation network between fetal and organoid cells can reconstruct cell lineage relationships between
radial glial progenitors, intermediates, and neurons. The network is colored based on the cell type. (B) Fetal and organoid cells are highly correlated and intermix in
the network. The network is colored based on whether the cell is derived from the organoid or fetal cortex. iPSC, induced pluripotent stem cell.
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analysis of cell heterogeneity and reproducibility. As protocols
continue to evolve, human organoids are likely to come even closer
to recapitulating bona fide human organogenesis in a predictable
and reproducible way, making organoids a highly relevant system
for understanding human development. We feel that quantitative
single-cell transcriptomic approaches will provide impressive
resolution of cell composition, lineage relationships, and gene
network function within developing organoids, and, together with
other genomic approaches, will offer unprecedented insight into the
mechanisms that underpin human organogenesis. Methods to
analyze DNA, methylation, chromatin accessibility, non-
messenger RNAs and proteins in single cells will further advance
the field. The cost-per-cell of many single-cell approaches is rapidly
reducing and newmethods are emerging that are relatively simple to
implement in the lab. Hence, we believe that these technologies
applied to human organoids represent a new direction in human
developmental biology, and will help pave the way towards a better
appreciation of what makes us uniquely human.
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