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ScienceDirect
Three-dimensional (3D) tissues grown in culture from human

stem cells offer the incredible opportunity to analyze and

manipulate human development, and to generate patient-

specific models of disease. Methods to sequence DNA and

RNA in single cells are being used to analyze these so-called

‘organoid’ systems in high-resolution. Single-cell

transcriptomics has been used to quantitate the similarity of

organoid cells to primary tissue counterparts in the brain,

intestine, liver, and kidney, as well as identify cell-specific

responses to environmental variables and disease conditions.

The merging of these two technologies, single-cell genomics

and organoids, will have profound impact on personalized

medicine in the near future.
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Introduction
The human body is composed of an amazing diversity of

cell fates, which transition through various states during

organ development, disease, and regeneration. Methods

to engineer diverse human tissues from stem cells are

being developed at a rapid pace in order to study

uniquely human organ development and disease in

controlled culture environments. Depending on the

tissue and disease, these culture models can be initiated

from organ-specific adult stem cells or iPSCs generated

from skin or blood [1]. These 3D tissues, commonly

called ‘organoids’, offer the promise to more accurately

model human development, physiology and disease than
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conventional 2D culture counterparts by creating

complex microenvironments where multiple lineages

structurally organize and communicate to maintain a

balanced physiological status. However, it has been

unclear how precisely these organoid systems recapitu-

late the cell state-specific gene expression landscapes of

the tissues they intend to model. Single-cell genomic

methods (reviewed in Ref. [2]) have brought new

analytic approaches to characterize these organoid

models with more resolution and less bias than previous

immunohistological or bulk RNA-seq descriptions of

organoid development.

Most single-cell RNA-seq methods require each cell to be

physically captured in a small volume where cells can be

lysed, and chemistry can be performed on the contents of

each individual cell. Capture can be achieved by hand

picking or flow cytometric sorting into multi-well plates

[3], limited dilutions into wafers containing hundreds of

microwells [4], or through valve [5] or droplet-based

microfluidic approaches [6�,7�]. In addition, combinato-

rial barcoding strategies have been developed that enable

barcoding of cellular RNAs without physically isolating

the cells [8]. Each strategy has particular benefits or

drawbacks depending on the application, however the

approaches that enable high-throughput (thousands of

cells per experiment) are best suited to efficiently sample

the complex cellular diversity in organoids and to under-

stand organoid to organoid variability. One limitation of

the higher throughput approaches is that only the 3’ or 5’

end of the transcript is sequenced limiting inquiry into

certain features of the transcriptome (e.g. alternative

splicing).

These quantitative SCG technologies are being used to

study how each cell fate is regulated within complex multi-

lineage human organoids (Figure 1). This data can be used

to eventually generate organ-level computational models

of human development, which may be used to predict

disease mechanisms. Here we review recent advances at

the intersection of single-cell genomics (SCG) and human

tissue engineering, and highlight existing challenges in the

organoid field where high-throughput SCG strategies can

have an immediate impact. We concentrate on organoid

modeling of the brain, intestine, liver, and kidney, where

there has been the most recent progress.

Brain

There have been multiple methods published to generate

3D tissue cultures that resemble the developing human
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Figure 1
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Single-cell transcriptomics is enabling high-resolution analysis of cell heterogeneity in human organoids.

(a) New high-throughput single-cell transcriptomic methods based on droplet microfluidics, combinatorial barcoding, or microwell technologies

have dramatically expanded the number of cells that can be analyzed per experiment, opening up new inroad into quantitative comparisons of cell

states. (b)–(c) These high-throughput methods are enabling the analysis of human 3D organoids derived from induced pluripotent stem cells (b)

across a range of environmental, genetic, and temporal scales (c). High-throughput methods will make it possible to quantitatively assess cell

states between organoids, batches, protocols, and various perturbations (environmental scale); between replicates, clones, individuals from the

same or different populations, and patients with a genetic disorder (genetic scale); and each of the genetic or environmental impacts on cell state

can be assessed over a time course (time scale). The panels highlight that multiple publications have already started to address how various

environmental or genetic conditions effect organoid cell states in brain, kidney and gut organoids.
brain. These approaches come in two distinct categories.

First, iPSC-derived neuroectoderm can be allowed to self-

organize into cerebral organoids that contain multiple

interconnected brain regions. Second, iPSC aggregates

can be patterned to generate distinct, independent brain

regions. In both cases, progenitor cells exhibit very similar

morphology and behaviors that have been observed in fetal

tissue. Neurons mature, establish synapses, spontaneously

fire action potentials, and may even respond to physiologi-

cal stimuli. Camp, Badsha et al. was the first to directly

compare cerebral organoids with the early fetal neocortex

using scRNA-seq and found that cell composition, lineage

relationships, and gene expression programs were largely

recapitulated in the organoid cortical regions (Figure 1) [9].

A major limitation of this study was the scRNA-seq

technology was low throughput, resulting less than

1000 cells. Quadratto et al. substantially advanced the

characterization of multi-region cerebral organoids using
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the Drop-seq method based on droplet microfluidics. It

allowed the authors to sequence over 80 000 cells from

31 whole-brain organoids, which clustered into many dis-

tinctpopulations representing different brain developmen-

tal identities, including forebrain and retina [10��]. It also

revealed, at the transcriptome level, that neurons progres-

sively matured from three to six months in culture along

multiple lineages (callosal projection neurons as well as

Müller glial and bipolar cells). The authors also provided

evidence that organoids from the same bioreactor

contained more comparable cell types than between bior-

eactors, likely due to variation in organoid brain region

composition [11].

Birey et al. analyzed human iPSC-derived dorsal and

ventral forebrain spheroids before and after fusion [12].

The data showed that cells were remarkably well

patterned. It was shown for the first time that cells which
www.sciencedirect.com
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migrated from the ventral to the dorsal region could

functionally integrate into cortical networks. Migrated

cells had increased complexity of dendrites branching,

twice higher action potential generation rate than non-

migrated or one region cells, expressed the presynaptic

and postsynaptic proteins and formed functional synap-

ses. In addition, the results of modeling a neurodevelop-

mental disorder on forebrain assembled spheroids from

different patients’ iPSC lines were compatible with the

expected disease phenotype. In each of these cases, there

was no robust characterization of how iPSC lines from

different human individuals, or even different lines from

the same individual compare in gene expression space.

Such a quantitative characterization will be required in

order to understand disease models. Furthermore, it is not

clear if cortical organoids can accurately model the expan-

sion of the outer radial glial populations that is observed in

later stages of human neocortex development [13].

Indeed, the spatial heterogeneity of organoid cultures

naturally requires spatial transcriptomics and there will be

major advances in the coming years in this area of

research. Finally, recent work has shown that organoids

can generate complex network wiring, and it will be

interesting to couple single-cell transcriptomics to

activity-dependent electrical stimulations [14].

Gut

Gut organoids (stomach, small intestine, colon) can be

established either from adult-derived intestinal epithelial

stem cells [15,16] or through the differentiation of iPSCs

through endoderm derived foregut and hindgut spheroids

[17,18]. To date, scRNA-seq on mouse small intestine

organoids has provided the most insight into the cellular

composition of adult stem cell-derived organoids. Low-

throughput methods were used to identify the distinct

cardinal populations of the intestinal epithelium (stem

cells, paneth cells, goblet cells, enteroendocrine cells,

enterocytes) [19]. However, enteroendocrine cells

needed to be enriched in order to identify enteroendo-

crine subpopulations due the use of low-throughput

methods. Haber, Biton, Rogel et al. generated an atlas

of mouse small intestine cell composition from 53 193

number cells. From this survey, they could identify each

cell population as well as subtypes of enteroendocrine

cells, such as early, middle and late precursors and mature

cells [20��]. A new enteroendocrine cell taxonomy was

created by comparing the expression of detected genes

across two subtypes to canonical classification markers.

Results revealed that previously defined markers, for

example Sct, Cck, Gcg and Ghrl, were not subtype-

specific but expressed across multiple cell types. Inter-

estingly, there was heterogeneity in an enterochromaffin

cell population, which split into two distinct subtypes. In

addition, the authors compared cell composition and gene

expression landscapes in organoids after exposure to

different microbe populations. Extended to humans, this

strategy will allow controlled experimentation of human
www.sciencedirect.com 
intestine to diverse dietary, microbial, or pharmaceutical

manipulations. Currently, however, improved organoid

culture methods are needed to enable human gut orga-

noids to maintain a balance of progenitors and differenti-

ated cells within a 3D structure, and there is currently no

single-cell transcriptomics manuscript published that

analyzed human intestinal organoids.

Liver

The dynamic developmental, structural, and cellular hetero-

geneity of the liver makes it challenging to recapitulate the

growth pathways of this organ in vitro from pluripotency. The

developing fetal liver initially serves as the reservoir for

hematopoiesis before structural reorganization and matura-

tion into the major metabolic organ of the body. Multiple

different protocols have been developed to differentiate

iPSCs in 2D monocultures to hepatic endoderm and then

toward ‘hepatocyte-like’ cells [21]. However, these cells are

not functioning as mature, metabolically complete hepato-

cytes and certain widely used protocols generate cells with

only a modest similarity to human hepatocytes, which may

even be off target cells with similarity to the intestinal

eptithelium [22]. Incorporating additional lineages thought

toprovidesignals that specifyhepatic fateacquisition, suchas

the transverse mesenchyme and nascent endothelium, into a

3Dmicroenvironmenthasshowngreatpromise ingenerating

hepatic organoids [23]. We have analyzed this system and

found that the hepatic cells within these in vitro and trans-

planted human organoids acquire a significant increase in

similarity to fetal hepatocytes relative to the 2D counterparts

[24]. However, in all cases we have analyzed thus far, there

remains a major challenge to generate mature hepatocytes

with fully metabolic functionality from human iPSCs.

It has been shown that 2D monocultures of primary adult

human hepatocytes can only be maintained short-term

due to dedifferentiation and cell death [25]. Recently,

protocols were developed to isolate hepatic stem cells

(HSCs) from adult tissues and culture HSCs in 3D matrix

environments that support proliferation and differentia-

tion of hepatic epithelium [26]. These methods are

revealing the potential to maintain differentiated hepatic

cells in vitro. Single-cell RNA-seq analyses on adult liver

could in principle map the transcriptome states of the

HSCs and mature hepatocytes in vivo, and be used to

assess the accuracy and precision of the adult stem-cell

derived organoids maintained in vitro. In any case, major

current protocols lack the cellular diversity (e.g. kupffer

cells, stellate cells, bile ducts, portal endothelium, etc.)

and the structural organization of the human liver. Spatial

maps of mouse liver hepatocyte transcripts confirmed that

hepatocytes were ordered into a metabolic hierarchy that

correlates with proximity to the portal vein and bile ducts

[27]. In the future, full reconstructions of liver develop-

ment, from fetus to adult, with structural and cell state

resolution will enable reverse engineering and bench

marking of 3D liver organoid technologies.
Current Opinion in Biotechnology 2019, 55:167–171
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Kidney

Mutliple recent studies showed that 3D kidney organoids

can be generated from pluripotent stem cells [28–30].

Bulk transcriptome analysis suggested that these orga-

noid systems resemble approximately the first trimester

of human kidney development. Recently, single-cell

transcriptomics was used to dissect cell composition in

human kidney organoids and to identify cell types that

could be impacted by disease-related genes predicted

from genome-wide association studies [30,31��,32,33].
The mapping of disease-related genes was generally

consistent with a scRNA-seq study of the mouse kidney,

which highlights that discrete human disease phenotypes

are due to mutations in genes that have a cell-type-

specific gene expression pattern in the kidney [32]. In

Wu et al., the authors showed that both organoid systems

contain very similar cardinal renal cell types (podocytes,

mesenchyme, tubule cells), albeit at different propor-

tions, and that the cells are relatively immature compared

to fetal and adult renal cells. The authors also identified

multiple populations of non-renal cells, and developed an

inhibition strategy based on receptor expression to reduce

the prevalence of these off-target cells. This manuscript is

a great example of how single-cell transcriptomics can be

used not only to assess the quality of the organoids, but

also guide the engineering process.

Furthermore, establishment of automated high-throughput

human organoid generation platforms that enable testing of

culture conditions to enhance cell differentiation, predict

chemical toxicity, and phenotype organoids promise rapid

innovations in culture methods and assessment of disease

phenotypes [34]. Czerniecki et al. used scRNA-seq to

characterize kidney organoids that had been optimized

by robotic manipulation of culture conditions in hundreds

of mini-organoids in microwells. Image-based data of

marker genes had suggested that the addition of vascular

endothelial growth factor (VEGF) increased the abundance

of endothelial cells in the organoids. However, single cell

RNA-sequencing on 10 535 cells from organoids treated

with or without VEGF, revealed that there were very few

matureendothelial cells present inthe organoids,which had

not been resolved by immunohistochemistry. The authors

conclude that the VEGF treatment greatly increases the

number of endothelial cell progenitors in the organoid

cultures, but only a small minority of these cells reaches

a mature endothelial cell differentiation state similar to that

found in vivo. This data further underscores the

importance of high-resolution descriptions of cell states

that arise in organoid culture systems.

Future prospective
Personalized medicine is on the horizon, where an

individual’s genome can be integrated with personalized

3D tissue culture models to create avatars of disease par-

ticular to the patient. Depending on the tissue and disease,

these culture models can be initiated from iPSCs,
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organ-specific adult stem cells, or cancer tissue. Even

though recent protocol enhancements enable longer-term

growth and development of 3D organoids, the challenge

remains to generate 3D models that recapitulate mature

cellularandphysiologicalphenotypes observedinpostnatal

human tissues. Single-cell sequencing methods are

required to assess the accuracy, precision, and efficiency

of protocol enhancements. Additionally, because of the

cellular complexity and general batch heterogeneity of

organoids, it is critical to sample as many cells as

economically feasible in multiple organoids per experi-

ment, ideally with spatial [35] and lineage resolution

[36]. We expect that over the coming years there will be

dedicated efforts to analyze organoids from hundreds of

patients with particular diseases from iPSC and adult

organoid biobanks. These efforts will require increases

in sample throughput either through sample tagging

[37], combinatorial barcoding [38�], or random composite

measurements [39]. As the field progresses, robust compu-

tational strategies will be required to integrate the data and

make biological sense of what is sure to be high-information

content and extremely complex data.
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