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A B S T R A C T

Monitoring metabolic activity in wild living animals has become of particular interest in the field of ecological
research. Methods for the repeated non-invasive sampling of individuals are needed. Thyroid hormones (TH) are
involved in the regulation of metabolic activity, and their measurement can be used as a proxy to monitor
metabolic changes. During periods of low energy intake, serum TH levels are reduced, leading to a decrease in
metabolic activity. Using urine samples collected during a food restriction experiment in captive bonobos we
validated a total triiodthyronin (TT3) enzyme immunoassay (EIA) for the monitoring of metabolic changes. We
found that the majority of immune reactivity of the assay in the urine samples could be explained through
immunoreactivity to T3. Furthermore, urinary T3 was stable through repeated freeze-thaw cycles but prolonged
exposure to room temperature lead to degradation. Most importantly, we found that for all animals urinary total
T3 levels were higher when more digestible energy was consumed. We concluded that urinary total T3 mea-
surements are a suitable method for monitoring metabolic changes in bonobos and potentially in a wide range of
animal species.

1. Introduction

Natural populations of animals and many human societies are ex-
posed to temporal changes in energy availability (Ebling and Barrett,
2008; Fu et al., 2017; Ngidi and Hendriks, 2014). Declining availability
in preferred food resources can, to a certain degree, be compensated
through the consumption of fallback foods, changes in diet, and adap-
tations in the digestive physiology (Lambert and Rothman, 2015;
Marlowe and Berbesque, 2009; Marshall et al., 2009). However, a de-
cline in energy availability can be severe enough to challenge physical
condition, reproductive performance, and survival (Hobbs, 1989;
Schneider, 2004; Wingfield and Kitaysky, 2002). Accordingly, species
and/or individuals differ in terms of optimal energy allocation strate-
gies causing individual and species-specific life history patterns (Perrin
and Sibly, 1993; Roff and Fairbairn, 2007; Stearns and Koella, 1986).
During periods of food scarcity, energy allocation shifts from growth
and reproduction to maintenance in order to assure survival (Perrin and
Sibly, 1993). Given the fitness consequences of changes in energy in-
take, the assessment of temporal metabolic changes across individuals
is of crucial importance in behavioral ecology. One way to estimate the
consequences of varying food availability is to monitor the ratio of

energy intake and energy expenditure in order to calculate energy
balance. This method necessitates detailed data on food intake, the
energy content of different food items, the time needed to process food,
and the time and energy that is needed to move between food patches
(Emery Thompson and Knott, 2008). Others have used changes in body
mass and/or body weight (Drewnowski et al., 2004; Groscolas, 1986;
Heldmaier, 1989) to estimate shifts in energy balance, which can be
challenging in wild animals. Another approach is the measurement of
biomarkers such as ketones (Knott, 1998) or urinary c-peptide levels
(Sherry and Ellison, 2007). Such biomarkers can be assessed non-in-
vasively by collecting urine samples (Hoogwerf and Goetz, 1983; Knott,
1998; Sherry and Ellison, 2007). Particularly, urinary c-peptide mea-
sures have been successfully applied to monitor energy balance in re-
lation to food availability in wild chimpanzees (Emery-Thompson et al.,
2009), black and white colobus monkeys (Harris et al., 2009), and
mountain gorillas (Grueter et al., 2014).

Thyroid hormones (TH) can be used to monitor changes in meta-
bolic activity, because they regulate basal metabolic rate and thereby
control growth and development (Kaack et al., 1979; López et al.,
2013). The two major TH in the circulation are thyroxine (3,3′,5,5′-
tetraiodothyronine, T4) and triiodothyronine (3′,3,5-triiodothyronine,
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T3). Both hormones, T3 and T4, are secreted by the thyroid gland.
There is peripheral conversion of T4 to T3. T4 is a prohormone that acts
as the reservoir for the production of T3, the biologically active hor-
mone (Soukhova et al., 2004, Burke and Eastman, 1974; Fisher and
Polk, 1989; Tomasi, 1991). The majority of circulating TH are re-
versibly bound to serum proteins with<1% remaining free. The sum of
bound and free TH is referred to as total TH, e.g., total T3 (Köhrle,
1999; Refetoff and Nicoloff, 1995).

The response of TH on metabolic changes is well established with
data from humans and mammals (Behringer et al., 2018): When caloric
intake is restricted, the concentration of TH declines thereby reducing
metabolic rate and facilitating the organism to conserve energy (Eales,
1988; Flier et al., 2000). While human plasma and serum T4 levels did
not dramatically decrease during food restriction (Danforth and Burger,
1989; Merimee and Fineberg, 1976), free as well as total serum T3 le-
vels decreased in response to reduced energy intake to as low as 50% of
the normal levels in human serum samples (Danforth and Burger, 1989;
Fontana et al., 2006). A similar decline in total and free blood T3 levels
was found during experimental food restriction in rats (Rattus norvegicus
domestica) (e.g., Reichlin, 1957; Vijayan and McCann, 1977), domestic
animals like goats (Capra aegagrus hircus) and fowl (Gallus gallus do-
mesticus) (e.g., Abdullah and Falconer, 1977; Klandorf and Harvey,
1985), and carnivores like badgers (Taxidea taxus) and bears (Ursus
americanus) (e.g., Harlow and Seal, 1981; Tomasi et al., 1998). Mon-
itoring total blood T3 levels allows for the monitoring of metabolic
changes during periods of changing energy supply.

The majority of previous studies investigating the effect of meta-
bolic changes in total T3 levels in humans and other animals relied on
serum samples. The collection of blood samples is invasive and alter-
native methods are in demand to be able to assess metabolic changes
via repeated measurements, especially in wild large-bodied species for
which repeated capture is not an option. Alternative matrices like urine
and fecal samples can be collected repeatedly and non-invasively in
zoos and wild animals without disturbing or impairing the individual
and can be used to quantify total T3 levels. Methods for measuring total
T3 levels in fecal samples have been developed and validated for a
variety of bird and mammal species, including captive and wild howler
monkeys (Alouatta palliate) (Dias et al., 2017; Wasser et al., 2010) and
yellow-breasted capuchin monkeys (Sapajus xanthosternos) (Schaebs
et al., 2016). Fecal total T3 levels increased during the mating season
and with high levels of food availability in wild Barbary macaques
(Macaca sylvanus) (Cristóbal-Azkarate et al., 2016). In dogs, a radio-
metabolism study revealed that THs are mostly excreted as T3 into the
urine and only to a small amount as T4 (Wasser et al., 2010). The
measurement of urinary total T3 levels as a marker for growth and
maturation was validated successfully in bonobos and chimpanzees. In
both species total T3 levels declined with age as shown in studies on
humans (Behringer et al., 2014). However, to our knowledge a con-
trolled study that relates urinary total T3 levels to metabolic changes in
relation to variation in energy intake in nonhuman animals has yet to
be carried out. Furthermore, information on assay specificity and
sample treatment related degradation patterns of urinary T3 levels have
not been investigated yet.

This study investigated urinary total T3 levels as a marker of me-
tabolic changes in captive bonobos during periods of controlled re-
striction of caloric intake. We predicted urinary total T3 levels to de-
cline during a period of low caloric intake and to increase when dietary
energy content was restored and to positively correlate with c-peptide
levels already measured in the same samples (Deschner et al., 2008). To
validate the method of measuring urinary total T3, we established an
HPLC/ELISA immunogram, to confirm that the immunoreactivity
measured in urine samples with the enzyme-linked immunosorbent
assay (ELISA) was representative of total T3 reactivity. Additionally, we
tested the stability of urinary total T3 to freeze-thaw cycles and when
samples were exposed to room temperature for different time intervals.

2. Methods

2.1. Study design and study animals

The study was conducted on a bonobo group for four weeks in
January and February 2007 in Frankfurt Zoo, Germany. Urine samples
were collected from seven adult bonobos (males: N=1, females:
N= 6) as described in detail in Deschner et al. (2008). The feeding
experiment consisted of two periods. During the first period (two weeks
of energy restriction), caloric content of food was gradually reduced by
decreasing the amount of energy rich food items and replacing them
with low caloric food items. In the second period (two weeks of re-
feeding), the low calorie food items were gradually replaced by calorie-
rich food items to increase the total energy content of the food. By the
end of the energy restriction phase food contained 21.2% less digestible
energy than during the first week of the of the energy restriction phase,
while average digestible energy of the food provided in the second
week of the refeeding phase, exceeded the one of the food provided in
the second week of the energy restriction phase by more than a double
(Deschner et al., 2012). The protocol of the feeding experiment was
approved by the authorities of Frankfurt Zoo and the authority of an-
imal welfare (Veterinaerdezernat, Regierungspraesidium Darmstadt,
Germany).

2.2. Sampling protocol

Before the onset of the experiment, bonobos were trained to urinate
on command close to the enclosure’s fence to facilitate urine collection.
Urination was enhanced by providing nettle tea 20min prior to the
collection time. Urine samples were collected directly into plastic cups
or were pipetted off the ground. Samples were collected twice a day,
once in the morning (~08:00) and once in the afternoon (~14:00).
Immediately after collection, urine samples were frozen and stored in a
freezer at− 20 °C. After completion of the experiment, samples were
transported on dry ice to the Endocrinology laboratory at the Max-
Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig,
Germany.

2.3. Sample preparation and total T3 assay

We measured total T3 in 194 urine samples of seven adult bonobos
with a total T3 ELISA (Ref. RE55251, IBL International GmbH,
Hamburg, Germany). In a previous study, we showed that the ontoge-
netic changes in urinary total T3 levels observed in bonobos and
chimpanzees corresponded to the pattern found in humans (Behringer
et al., 2014). Here we added a number of analytical validations steps,
such as testing stability and specificity of the antibody, as well as
whether urinary total T3 correlates with energy consumption. 87 urine
samples (average 12 samples ± 1 per individual) were collected
during the energy restriction period, and 104 samples (average 15
samples ± 1 per individual) during the refeeding period.

Intra-and interassay coefficients of variance of low and high con-
centrations (calculated from replicate measurements of samples and
quality controls) were 4.1% and 3.0%; and 5.5% and 4.7%, respec-
tively.

To compensate for variation in volume and concentration of the
urine, specific gravity (SG) was assessed using a digital handheld re-
fractometer (TEC, Ober-Ramstadt, Germany) and total T3 corrected for
SG was calculated as described in Miller et al. (2004).

Three out of the 194 urine samples were excluded preceding ana-
lysis, because in these three samples SG measurement equaled zero;
indicating that the urine was heavily diluted and making a proper
concentration correction impossible, leaving a total sample set of 191
urine samples.
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2.4. C-peptide assay

We measured urinary c-peptide with AutoDELFIA® C-peptide, a
commercially available time-resolved fluoroimmunoassay kit from
PerkinElmer, designed to measure C-peptide in human serum and
plasma. The assay was validated for the use in bonobo urine and proved
to provide information on changes in body mass in bonobos (Deschner
et al., 2008).

2.5. Analytical validation

2.5.1. HPLC/ELISA- immunogram
For the assessment of immunoreactivity of the total T3 ELISA (Ref.

RE55251, IBL International GmbH, Hamburg, Germany), a solution
with only T3 standard (T3: Sigma Aldrich, product number T2877) and
a pool sample of three different bonobo urine was fractioned using a
high-performance liquid chromatograph (HPLC).

100 µl of the pooled urine sample and T3 standard was injected in a
Waters Alliance 2695 HPLC equipped with a Gemini C18 column
(Phenomenex, Torrance, CA, USA) with a flow rate of 0.2 ml/min using
a gradient of eluent A (5% acetonitrile with 0.1% formic acid) and
eluent B (95% acetonitrile with 0.1% formic acid). 18 fractions were
collected with a Waters Fraction Collector 3 (Waters, Milford, MA,
USA). Fractions were lyophilized (Heto PowerDry LL300C) overnight
and kept frozen at− 20 °C until they were reconstituted in 150 µl of
assay buffer. Every fraction was run on the total T3 ELISA for the as-
sessment of immunoreactivity in each fraction.

2.5.2. Stability experiment
To test the degree of degradation of total T3 in urine samples of

bonobos, two experiments were carried out with four samples each. In
the first experiment we left aliquots of the samples at room temperature
for 0, 5, 19, 33, and 61 h, respectively. In the second experiment we
exposed aliquots of four samples to four freeze and thaw cycles.

2.6. Physiological validation

2.6.1. Measurement of digestible energy intake
For the calculation of daily digestible energy intake we summarized

the energy content of each food item considering the total amount that
each food contributed to the meal (Deschner et al., 2012) for details on
caloric measures of food items). Food that was not consumed was
weighed and the corresponding energy content was subtracted from the
original amount. In addition, the feces from the entire group were
collected daily, weighed, thoroughly mixed, and a sample was taken for
measurement of the energy content.

The gross energy of each food item and fecal sample was determined
via bomb calorimetry (C5003 bomb calorimeter; IKA, Staufen,
Germany) conducted in the nutritional physiology laboratory at
Leibniz-Institute for Zoo and Wildlife Research (IZW) in Berlin,
Germany (Ortmann et al., 2006). The determined values for gross en-
ergy of provisioned food items in kJ per gram dry matter and of the
energy excreted via feces the next day allowed us to calculate the daily
consumed amount of digestible energy in kJ for the entire group
(Ortmann et al., 2006). For further information, see Deschner et al.
(2012).

2.7. Statistics

2.7.1. Urinary total T3 level changes in relation to energy consumption
To explore changes in urinary total T3 levels with available calories,

we ran a linear mixed model (LMM, (Baayen, 2008)) with urinary total
T3 levels corrected for SG (log transformed) as the response variable
and digestible energy consumption of the previous day as the predictor
variable. We included individual ID as a random effect, digestible en-
ergy consumption of the previous day was included as random slopes

within individual ID. We included the random slope of digestible en-
ergy on the previous day to account for the possibility that the effect of
this predictor varied between individuals. Not accounting for such a
potential effect can inflate type I error rates (Barr et al., 2013;
Schielzeth and Forstmeier, 2009). Indeed, the presence of such varia-
tion of the effect of digestible energy among individuals seems quite
likely in this study, for instance, due to differential impact of genetic
factors, social skills, or rank. The model was fitted in R, version 3.3.2, (
R Core Team, 2018) using the function lmer of the R package lme4
(Bates et al., 2015).

Model stability was determined by excluding individuals one at a
time and comparing estimates for the fixed effects with those of the full
model. Model stability results did not indicate any influential levels of
random effects to exist.

Values for digestible energy consumption were square-root trans-
formed, the minimum was subtracted and the resulting value was z-
transformed to a mean of zero and a standard deviation of one to im-
prove the interpretability of regression coefficients (Schielzeth, 2010).

Likelihood ratio tests were used to determine the significance of the
full model as compared to the null model, (Dobson, 2002) and to de-
termine significance of individual effects (Barr et al., 2013).

As one female was in her last trimester of pregnancy during the
experimental period and TH, especially T3 levels, are known to be
elevated during pregnancy (Soldin et al., 2004), TH levels during this
period may not reflect acute metabolic changes. Therefore, we ran all
models with and without this individual.

2.7.2. Urinary total T3 levels in relation to urinary c-peptide levels
We investigated the association between urinary total T3 levels and

c-peptide levels by calculating the Spearman correlation for each in-
dividual and then testing with a one-sample t-test if this association
across subjects was significantly different from 0.

3. Results

3.1. Analytical validation

3.1.1. HPLC/ELISA- immunogram
For the T3 standard, immunoreactivity was found in fractions 5–7,

while for the pooled urine immunoreactivity was found in fractions 4–8
(Fig. 1). Total immunoreactivity of urine fractions (100%) added up to
4.67 (ng/ml). 3.58 (ng/ml) of the reactivity was found in fractions 5–7,
the same fractions in which immunoreactivity was found for the

Fig. 1. High-performance liquid chromatographic separations representing
total T3 (ng/ml per fraction) reactivity of an ELISA to pooled bonobo urine
sample (open circles) in comparison to a T3 standard (filled squares) after se-
paration in 18 fractions.
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standard. Therefore, 77% of immunoreactivity in the pool urine sample
could be explained through immunoreactivity to T3, while the im-
munoreactivity in fractions 4 and 8 represented 23% of the total im-
munoreactivity.

3.1.2. Stability experiment

i) Freeze-and thaw cycles

Urinary total T3 levels remained stable for up to four thawing cy-
cles, with only a slight decline of on average< 5% and no drastic
variation in decline across samples (Fig. 2).

ii) Exposure to room temperature

Exposing urine samples to room temperature led to a gradual de-
crease in urinary total T3 levels with increasing exposure duration
(Fig. 3). However, the magnitude of degradation differed widely across
samples. While urinary total T3 levels remained relatively stable in one
sample across the entire duration of exposure to room temperature, the
other three showed a considerable decline. After five hours, samples
still contained on average 88% of the original urinary total T3

concentration. After 19 h of exposure, samples contained on average of
75% of the original samples and after 33 h of exposure, urinary total T3
concentration was 65% of the original value. An additional measure-
ment after 61 h of exposure to room temperature did not result in fur-
ther degradation.

3.2. Physiological validation

3.2.1. Urinary total T3 level changes in relation to energy consumption
The average of urinary total T3 concentration across all individuals

was 1.3 (ng/ml) SD ± 0.9 during the calorie restriction phase and 4.1
(ng/ml) SD ± 3.3 during the refeeding period.

The progression in energy restriction was associated with a gradual
decrease in average daily urinary total T3 levels (Fig. 4). Total T3 levels
immediately increased at the first day of refeeding, and after the fifth
day into the refeeding period, total T3 levels were even higher com-
pared to the beginning of the experiment (Fig. 4).

Comparing the full model, including the test predictor digestible
energy, to the null model, lacking this test predictor, revealed sig-
nificance (whole group: χ2= 21.5, df= 1, P < 0.001; without the
pregnant female: χ2= 18.4, df= 1, P < 0.001). Urinary total T3 le-
vels were significantly higher when more digestible energy was con-
sumed (whole group: Est. = 0.51, SE=0.05, P < 0.001; without the
pregnant female: Est. = 0.53, SE=0.06, P < 0.001). All individuals
showed the same pattern, with urinary total T3 levels increasing with
increasing digestible energy consumption (Fig. 5).

Average urinary total T3 levels during the restriction phase were
lower than during the refeeding phase of the feeding experiment for
every animal (Fig. 6). The bonobo with the highest urinary total T3
levels during the restriction period had on average 1.8 (ng/ml) SD ±
1.0 and the lowest individual 0.8 (ng/ml) SD ± 0.3. During the re-
feeding period, the highest average individual urinary total T3 level
was 9.9 (ng/ml) SD ± 4.6, and the lowest level was on average 2.8
(ng/ml) SD ± 2.8. The adult male showed the strongest change in
urinary total T3 levels, and the pregnant female showed the weakest
change.

3.2.2. Urinary total T3 levels in relation to urinary c-peptide levels
Urinary total T3 levels were significantly correlated to c-peptide

during the energy restriction phase (average r= 0.30, t= 2.67, df= 5,
p=0.044), as well as during the refeeding phase of the experiment
(average r= 0.394, t= 3.18, df= 5, p= 0.024).

4. Discussion

In this study we have shown that the total T3 assay measures mainly
T3 in urine samples. Urinary total T3 is stable during freeze-thaw cy-
cles, but should not be stored for hours at room temperature. The ur-
inary total T3 levels are also positively related to caloric intake.

HPLC/ELISA immunograms are one procedure to determine the
immunoreactivity of an assay (Rettenbacher et al., 2013; Stöwe et al.,
2013). Most commercial assays are designed to measure a certain native
hormone in human blood samples. Assays may cross-react with sub-
stances not present in blood but present in matrixes like urine or feces,
which therefore were not tested for their cross-reactivity with the an-
tibody of the assay by the supplier (Rettenbacher et al., 2013). With the
performance of a HPLC/ELISA immunogram we were able to show that
the majority of immunoreactivity of the total T3 ELISA in urine was
indeed due to cross-reactivity to T3. Based on our findings, we conclude
that urinary total T3 measurements with the assay used are sufficiently
specific for detecting changes in T3 levels, because free T3 is the bio-
logical active TH, and only unbound TH are filtrated by the kidney into
the urine (Shakespear and Burke, 1976).

Total T3 in urine was stable during freeze-thaw cycles. This allows
for the use of urine samples, which had already been thawed for other
purposes. However, total T3 levels declined with exposure time to room

Fig. 2. Mean urinary total T3 recovery in four bonobo samples during four
thawing cycles (dashed lines represent the four samples, the solid line re-
presents the mean across all samples).

Fig. 3. Mean urinary total T3 recovery in four bonobo samples left at room
temperature for up to 61 h (dashed lines represent the four samples, the solid
line represents the mean across all samples).
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temperature. As a result, the handling of thawed urine samples should
be as short as possible or samples should be kept cold during the
handling process after thawing, e.g. by storing them on ice.

The results from the feeding experiment indicate that bonobos
adapted their physiology to a reduced caloric intake. The decline of
urinary total T3 levels at times of food restriction is consistent to pre-
vious findings of minimized energy expenditure at times of low energy
intake (Delgiudice et al., 1987; Harlow and Seal, 1981; Palmblad et al.,
1977; Rosenbaum et al., 2000). Caloric restriction tends to reduce
thyroid function and thereby allows the body to conserve energy by
reducing the metabolic rate (e.g., Blake et al., 1991; Eales, 1988; Flier
et al., 2000; Silva, 1995). The fast response of changes in TH levels in
our study corresponds to results of studies exposing their subjects to
more severe energy restrictions such as starvation studies in carnivores
(Delgiudice et al., 1987; Harlow and Seal, 1981). The overall increase of
urinary total T3 levels during refeeding and even higher values during
this period compared to onset levels are in line with other studies
(Danforth et al., 1979; Galofré et al., 2010).

Urinary total T3 levels in this study correlated positively with

urinary c-peptide levels an established physiological marker for the
assessment of energetic condition. Urinary c-peptide has been validated
for the monitoring of variation in body mass, nutritional status, and
energetic condition in urine of nonhuman primates (Deschner et al.,
2008; Emery Thompson and Knott, 2008; Girard-Buttoz et al., 2011;
Sherry and Ellison, 2007). In humans, c-peptide levels correlated po-
sitively with body mass index across individuals (French et al., 1992;
Polonsky et al., 1988), and increased with weight gain within in-
dividuals (Yoshida et al., 2006).

Because metabolic rate is sensitive to energetic condition the

Fig. 4. Temporal profile of average urinary total T3 levels (ng/ml corrected for specific gravity) of seven adult bonobos (N=191 samples) throughout the energy
restriction (N=87 samples) and refeeding period (N=104 samples). Urinary total T3 levels are given as group means (± SD).

Fig. 5. Daily urinary total T3 levels (ng/ml corrected for specific gravity (corr.
SG)) in relation to amount of digestible energy for seven adult bonobos
(N=191 samples).

Fig. 6. Changes in average urinary total T3 levels (ng/ml corrected for specific
gravity) from the energy restriction to the refeeding period for seven adult
individuals. Y-axis is log transformed.
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observed correlation between urinary total T3 levels and urinary c-
peptide levels was expected, particularly because energy intake was the
only factor manipulated in this study. However, T3 regulates a variety
of metabolic activities throughout lifetime and factors other than en-
ergy intake contribute independently to variation in T3 excretion, such
as, cold ambient temperatures which force the body to increase basal
metabolic rate to produce heat (van der Lans et al., 2013). TH levels
then increase independent of energy intake and energetic status
(Eastman et al., 1974). When the body increases its temperature, for
example during fever, free TH levels increase even when the individuals
eats less due to the sickness (Rastogi et al., 1976; Shafer et al., 1980).
Increases in body temperature (adaptive thermogenesis) are associated
with an increase in metabolic rate and as a result change the circulating
TH levels (Bianco et al., 2005). C-peptide on the other hand is a by-
product of insulin production. Insulin is involved in the carbohydrate
metabolism and is secreted as a response to low blood sugar levels (Blix
et al., 1982). Given that c-peptide levels are related to the amount of
glucose present in blood, changes in T3 and c-peptide levels can happen
independently of each other. For example, during exercise urinary c-
peptide levels decline in response to a declining blood sugar level, while
T3 levels increase in response to an increase in metabolic demands (Blix
et al., 1982; Frisch et al., 1984). T3 levels increase in response to in-
creased energy intake independent of whether the energy source mainly
consists of protein or carbohydrates, whereas c-peptide levels decline
with a protein biased diet which resembles excretion patterns observed
during periods of starvation (Landau et al., 1981). A meat-based in-
crease in energy intake would lead to an increase in T3 levels but not to
an increase in c-peptide levels. C-peptide relates more to carbohydrate
intake. TH are related to energy intake, but they also show parallel
changes to energy expenditure (Al-Adsani et al., 1997; Bianco et al.,
2005; Lowell and Spiegelman, 2000).

Measuring T3 levels cannot serve as a mere substitute for measuring
c-peptide levels to estimate variation in nutritional status. Given the
multitude of parameters influencing T3 excretion and thereby meta-
bolic rate and the scarcity of studies on non-invasive measurements of
T3 levels in wild animals, explorative studies are needed to estimate the
impact of environmental and developmental factors on T3 excretion.
With the ability to control for irrelevant factors, the parallel measure-
ment of T3 and c-peptide levels might allow for the monitoring of im-
portant life history decisions. One example could be periods of high
male-male competition for access to fertile females. One could expect
that the necessity of mate guarding might lead to a reduced investment
in feeding and thereby lower c-peptide levels. Males, dependent on
their rank, age and overall physical condition, might need to keep
metabolic rates high to be able to successfully compete for mating
opportunities, and therefore a divergence in changes of c-peptide and
T3 levels might be expected.

5. Conclusion

We validated urinary total T3 measurements for the monitoring of
metabolic changes in relation to variation in energy intake in bonobos
with an ELISA. We have shown that freeze-thaw cycles do not affect
urinary total T3 levels; however, storing the samples at room tem-
perature should be avoided. With this study we have shown that ur-
inary total T3 measurements are a suitable method for monitoring
metabolic changes in bonobos and potentially in a wide range of animal
species.
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