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SUMMARY

A complete mitochondrial (mt) genome sequence
was reconstructed from a 38,000 year-old Neander-
tal individual with 8341 mtDNA sequences identified
among 4.8 Gb of DNA generated from �0.3 g of
bone. Analysis of the assembled sequence unequiv-
ocally establishes that the Neandertal mtDNA falls
outside the variation of extant human mtDNAs, and
allows an estimate of the divergence date between
the two mtDNA lineages of 660,000 ± 140,000 years.
Of the 13 proteins encoded in the mtDNA, subunit
2 of cytochrome c oxidase of the mitochondrial elec-
tron transport chain has experienced the largest
number of amino acid substitutions in human ances-
tors since the separation from Neandertals. There is
evidence that purifying selection in the Neandertal
mtDNA was reduced compared with other primate
lineages, suggesting that the effective population
size of Neandertals was small.

INTRODUCTION

Although it is well established that Neandertals are the hominid

form most closely related to present-day humans, their exact re-

lationship with modern humans remains a topic of debate (Hublin

and Pääbo, 2006; Soficaru et al., 2006; Harvati et al., 2007). Mo-

lecular genetic data first spoke to this issue in 1997, when a 379
416 Cell 134, 416–426, August 8, 2008 ª2008 Elsevier Inc.
base pair section of the hypervariable region I (HVRI) of the mito-

chondrial genome (mtDNA) was determined from the Neander-

tal-type specimen found in 1856 in Neander Valley, near Düssel-

dorf, Germany (Krings et al., 1997). Since then, a total of 15

complete or partial Neandertal HVRI sequences, as well as two

HVRII sequences (Krings et al., 1999; Krings et al., 2000), have

been described. Phylogenetic analyses of these suggest that

Neandertal mtDNA falls outside the variation of modern human

mtDNA. Since the mtDNA genome is maternally inherited with-

out recombination, these results indicate that Neandertals

made no lasting contribution to the modern human mtDNA

gene pool (Krings et al., 1997; Currat and Excoffier, 2004; Serre

et al., 2004).

High-throughput 454 sequencing techniques have recently

been applied to ancient DNA (Green et al., 2006; Poinar et al.,

2006; Stiller et al., 2006). These methods open new possibilities

for the retrieval of ancient DNA that has hitherto relied either on

the cloning of random molecules in bacteria (Higuchi et al.,

1984; Pääbo, 1985; Noonan et al., 2005, 2006) or on the PCR

amplification of individual DNA sequences of interest (Pääbo

and Wilson, 1988; Pääbo et al., 2004). The main benefit of the

454 sequencing technique is the sheer volume of sequence

data that make it practical to undertake genome-scale ancient

DNA sequencing projects. This is particularly feasible for mito-

chondrial genomes (Gilbert et al., 2007), given their smaller

size relative to the nuclear genome and their abundance in cells,

where, typically, several hundred mtDNAs per nuclear genome

exist.

The 454 sequence data from ancient DNA have also allowed

an increased understanding of DNA diagenesis (i.e., how DNA
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is modified during deposition in a burial context). In particular,

they have allowed a quantitative model of how DNA degradation

and chemical modification occurs, and how the effects of these

processes interact with the molecular manipulations used to

generate sequencing libraries (Briggs et al., 2007). Notably,

although it was previously known that a high rate of cytosine de-

amination occurs in ancient DNA (Hofreiter et al., 2001), it has be-

come clear that this is particularly prevalent in the ends of the

ancient molecules, presumably because these are often single

stranded (Briggs et al., 2007). Deamination of cytosine residues

results in uracil residues that are read as thymine by DNA poly-

merases, leading to a high rate of C-to-T transitions. A high

rate of G-to-A transitions observed near the 30 ends of sequence

reads is thought to be caused by deaminated cytosine residues

on the complementary strands used as templates during the fill-

in reaction to create blunt ends when sequencing libraries are

constructed (Briggs et al., 2007).

By 454 sequencing, we have generated 34.9-fold coverage of

the Neandertal mtDNA genome from a Neandertal bone (Vindija

bone 33.16) excavated in 1980 from Vindija Cave, Croatia (Malez

and Ullrich, 1982). It has been dated to 38,310 ± 2130 years be-

fore present (Serre et al., 2004). Previously, the mtDNA HVRI se-

quence of this bone has been determined (Serre et al., 2004), as

well as 2414 bp of mtDNA sequences by 454 sequencing (Green

et al., 2006). Here, we present its complete mtDNA sequence, as

well as the insights it allows into recent human and Neandertal

mtDNA evolution.

RESULTS

DNA Sequence Determination
Three DNA extracts, each from 100–200 mg of a Neandertal

bone (Vindija 33.16) were prepared in our cleanroom facility

where several precautions against DNA contamination are im-

plemented (Experimental Procedures). These include complete

separation from other parts of the laboratories, direct delivery

of all equipment and reagents to the facility, positive pressure

generated with filtered air that excludes particles larger than

0.2 mm, and UV irradiation and bleach treatment of all surfaces.

The bone surface was removed prior to extraction. However,

the interior of bones is also often contaminated with modern

human DNA, presumably due to past washing and other treat-

ments of Neandertal bones. Thus, we analyzed each extract

for contamination by extant human mtDNA by PCR with primers

flanking positions in the HVRI that distinguish extant humans

from Neandertals (Green et al., 2006), and amplify both types

of mtDNA with similar efficiencies. Following amplification, we

cloned the PCR product and sequenced 103–112 clones to de-

termine the ratio of Neandertal to extant human mtDNA. The

contamination rate in the three extracts ranged from 0%–0.9%

(see Figure S1 available online).

From these extracts, we generated a total of nine 454 libraries

in the cleanroom facility with 454 adapters with a Neandertal-

specific sequence key that is unique to this project, and thus un-

equivocally identifies each sequence determined as derived

from the extract of a Neandertal bone (Briggs et al., 2007). This

allows detection of any contamination that may be introduced

in subsequent handling and sequencing steps outside the clean-
room. To maximize the library and sequence yield, we incorpo-

rate two modifications to the standard 454 protocol that reduce

the need to perform titration runs of libraries (Meyer et al., 2008)

and allow more molecules to be retrieved during library prepara-

tion (Maricic and Pääbo, unpublished results). From these librar-

ies, we generated a total of 39 million sequence reads by 147

runs on the GS FLX sequencing platform. Bases were called

with the standard 454 signal threshold and filtering criteria with

minor modifications tailored for short, ancient sequence reads

(Meyer et al., 2008).

Neandertal sequences were identified within each run as

described previously (Green et al., 2006), with the chief criterion

being sequence similarity to a primate genome. mtDNA se-

quences were identified from these with further criteria (see Ex-

perimental Procedures), including similarity to the human mtDNA

at least as great as to any nuclear DNA sequence. While the total

fraction of sequences that are identified as Neandertal varied

across libraries and library pools, the ratio of putative Neandertal

nuclear DNA sequences to mtDNA sequences varied little

among these libraries, and averaged 171. This corresponds

to �2100 mtDNA molecules per cell. In total, 8341 mtDNA se-

quences were identified. They are of an average length of 69.4

bp (SD = 26.4), with the shortest fragment identified being 30

bp (limited by the length cut-off in the analysis pipeline), and

the longest fragment being 278 bp (limited by the flow cycles

performed on the GS FLX instrument).

mtDNA Genome Assembly
Ancient DNA sequences present a challenge for DNA sequence

assembly since they are typically short and exhibit high rates of

nucleotide misincorporation. A further complication is that pyro-

sequencing (Ronaghi et al., 1998), for example, as performed on

the GS FLX platform, calls long polymers of the same base with

reduced accuracy. With these issues in mind, we designed an

assembly procedure for ancient DNA. In short, each sequence

identified as mtDNA was aligned over its entire length to the hu-

man reference mtDNA sequence (UCSC build hg18). These

alignments were then merged, and each alignment column

was examined to determine the majority base, yielding an as-

sembled mtDNA sequence. Homopolymer lengths at positions

where the reference human carries R5 identical bases were de-

termined by analysis of the raw signal distributions as described

in the Supplemental Data.

Following this examination, some problematic regions re-

mained in the assembly. These include four regions of a total

length of 20 bp, where no sequence coverage existed, eight

other regions amounting to a total of 117 bp covered by only sin-

gle reads, nine positions where no majority base existed due to

low coverage, and 31 homopolymers for which the data were

not sufficient to determine their length. These regions were am-

plified by PCR from a Vindija 33.16 bone extract in two-step mul-

tiplex PCRs (Krause et al., 2006), cloned, and sequenced by

Sanger technology in order to complete the assembly (Experi-

mental Procedures).

We then reapplied our mtDNA fragment detection pipeline to

all Neandertal DNA sequences determined from the bone, but

compared them to the assembled Neandertal mtDNA instead

of the reference human mtDNA. This resulted in the detection
Cell 134, 416–426, August 8, 2008 ª2008 Elsevier Inc. 417



of an additional 721 mtDNA sequences that were initially missed,

since they have a higher similarity to the human nuclear genome

than human mtDNA, and thus could only be identified with the

assembled Neandertal mtDNA. Interestingly, 522 of these se-

quences were similar to a single nuclear mtDNA insertion on

chromosome 1 (hg18, position 554,327–560,165). In total, 8341

mtDNA fragments totaling 578,733 nt yielded a final assembly

of 16,565 nt, where no position has less than 9-fold sequence

coverage.

Estimates of Contamination
In order to estimate the level of human contamination among the

mtDNA sequences determined from these libraries, we realigned

the individual sequences to the assembled mtDNA and used

a number of differences between the putative Neandertal and hu-

man mtDNAs as diagnostic markers. We then examined each

alignment to determine if it contained a position that allowed it

to be classified as of either Neandertal or extant human origin.

First, we used three human-Neandertal differences in the

HVRI: an A-to-T and a C-to-A transversion, and an insertion of

an A where all Neandertal sequences determined to date, includ-

ing Vindija 33.16 (Serre et al., 2004), differ from all 1865 contem-

porary human HVRI sequences available in the mtDB database

(Ingman and Gyllensten, 2006). Forty three sequences overlap-

ped these HVRI positions, and all were of the Neandertal type

(Figure 1). Second, we used four transversions between the pu-

tative Neandertal mtDNA and human mtDNAs that occur outside

the HVRI and are neither adjacent to homopolymers nor poly-

Figure 1. Sequences Overlapping HVRI

Positions Carrying Diagnostic Differences

between Neandertal and Extant Humans

All 43 sequences overlapping the three diagnostic

positions are shown.

morphic among the 1865 human mtDNA

sequences. Among 192 sequences that

overlapped these positions, 186 carried

the base of the Neandertal assembly

(Figure S2). Of the six sequences that

did not, five were cases in which the ob-

served base was T, the assembly base

was C, and the modern human base

was G or A. Thus, these are likely to be

the result of deaminated cytosine resi-

dues that are common in ancient DNA

(Hofreiter et al., 2001; Briggs et al.,

2007; Brotherton et al., 2007). The alter-

native that these are contamination by

a previously unknown modern human

mtDNA sequence is unlikely because of

the large number of modern human se-

quences available. One single sequence

matches the human base at a diagnostic

position. Interestingly, this sequence

shows features commonly associated

with ancient DNA (Figure S2) in that it be-

gins with a C-to-T mismatch to the assembly, ends with two G-

to-A mismatches, and is 65 nucleotides long, and thus relatively

short. In spite of this, it may represent a contaminant, since mod-

ern DNA sequences retrieved from ancient specimens can carry

such features (Sampietro et al., 2006). In order to estimate con-

tamination levels, we thus disregard the five C-to-T mismatches

as uninformative and count the last sequence as a contaminant.

This yields a total of 229 out of 230 sequences carrying Neander-

tal diagnostic positions, and an estimate of the contamination

rate of 0.4% with a 95% confidence interval (CI) of 0.01%–2.4%.

In order to maximize our power to detect contamination, we

also used all positions in the Neandertal assembly that differ

from extant humans and for which at least 99% of a panel of

311 worldwide modern human mtDNA sequences do not differ,

ignoring positions that could be due to cytosine deamination. A

total of 133 positions fulfilled these criteria and allowed 1963 frag-

ments to be classified. Nine were of extant human origin, yielding

a contamination estimate of 0.5% (95% CI = 0.21%–0.87%).

We conclude that so few of the mtDNA sequences determined

derive from extant humans that they will not compromise the as-

sembly, which has a 35-fold average coverage. The assembled

mtDNA sequence, therefore, represents a reliable reconstruction

of the mtDNA that this Neandertal individual carried when alive.

MtDNA Sequence Analyses
Alignment of the 16,565 nt Neandertal mtDNA to the 16,568 nt

human revised Cambridge reference mtDNA sequence (rCRS)

(Andrews et al., 1999) revealed 206 differences (195 transitions
418 Cell 134, 416–426, August 8, 2008 ª2008 Elsevier Inc.



and 11 transversions). In the noncoding control region, the Nean-

dertal sequence contains a deletion of four base pairs (CACA) at

rCRS position 514 and a previously known insertion of one base

pair (Serre et al., 2004) following position 16,263. The 13 protein-

coding genes, the 22 tRNA genes, and two rRNA genes in the

Neandertal mtDNA lack notable structural differences when

compared to the human and chimpanzee mtDNAs (Table S2).

Figure 2A shows the distribution of pairwise sequence differ-

ences among 53 humans from around the world (Ingman et al.,

2000), between these and the Neandertal, and between the

modern humans and the chimpanzee mtDNAs. Among the hu-

mans, the number of differences ranges from 2 to 118, and is bi-

modal. The peak with a mode around 99 differences contains

comparisons that involve at least one member of deep clades

containing sub-Saharan African mtDNA. The peak with a mode

around 44 differences involves comparisons between individuals

outside these clades. By contrast, the number of differences be-

tween human mtDNAs and the Neandertal mtDNA ranges from

201 to 234, and is unimodal. Thus, the Neandertal mtDNA falls

outside the variation of extant humans, even when nucleotide

differences, uncorrected for multiple substitutions, are counted.

Notably, when the comparisons are restricted to only the HVRI or

HVRII, the distributions of pairwise differences among extant hu-

mans and between humans and the Neandertal overlap, illustrat-

ing that multiple substitutions complicate the reconstruction

of mtDNA relationships when only these regions are studied

(Figures 2B and 2C).

MtDNA Divergence
To further explore the evolutionary relationship between Nean-

dertal and extant human mtDNAs, we estimated a phylogenetic

tree with the complete mtDNA of Neandertal, 53 human

mtDNAs, the human rCRS, and chimpanzee and bonobo

mtDNAs as outgroups. Neighbor-joining, maximum likelihood,

Figure 2. Distribution of Pairwise mtDNA

Sequence Differences

Sequence differences among 53 humans (green),

between humans and the Neandertal mtDNA

(red), and between humans and chimpanzee

(blue): (A) the complete mtDNA; (B) the HVRI

(Neandertal position 16,044–16,411); and (C) the

HVRII (position 57–372).

parsimony, and a Bayesian approach

(Supplemental Data) all indicated that

the 54 extant humans formed a monophy-

letic group to the exclusion of the Nean-

dertal, with complete support for each

tree-building measure (100% bootstrap

support; 1.0 posterior probability). Unsur-

prisingly, this topology is also found when

analysis is restricted to various subsets

of the sequence, such as protein-coding

sequences and RNA-coding sequences

(Supplemental Data).

In order to estimate the date of the di-

vergence of the Neandertal and extant

human mtDNAs, we compared the Neandertal mtDNA to 10 di-

vergent human mtDNAs (Figure 3A), and tested if we could reject

a molecular clock assuming the topology of the Bayesian tree

(see Supplemental Data). This was not the case, indicating no

significant heterogeneity in evolutionary rates among the se-

quences. To allow divergences of mtDNA sequences to be

transformed to calendar years, we assumed—based on the fos-

sil record—that humans and chimpanzees diverged between six

(Galik et al., 2004) and eight million years ago (Brunet et al., 2002;

Lebatard et al., 2008). This results is an estimate of the mean di-

vergence time between Neandertal and extant human mtDNAs

of 660,000, with a 95% credibility interval of 520,000–800,000

years ago (Figure 3B) (see also Supplemental Data), which over-

laps with previous estimates based on HVRI and II sequences

(Krings et al., 1997; Krings et al., 1999). Since the width of the di-

vergence credibility interval increases almost linearly with the

posterior mean of the divergence estimate (Figure S5), further

sequence data would be unlikely to decrease the width of the

credibility interval (Yang and Rannala, 2006). However, if the es-

timated date of the divergence between humans and chimpan-

zees, or current assumptions about how the mtDNA evolves,

were found to be incorrect, the estimates in calendar years of

the divergence of the Neandertal and human mtDNAs would

need to be revised.

Mitochondrial Protein Evolution
Next, we estimated the substitutions that occurred in each of the

13 mtDNA protein-coding genes on the Neandertal and the hu-

man lineages with parsimony with the chimpanzee as an out-

group (Table 1). The total number of silent substitutions assigned

to the Neandertal lineage, 44, is lower than the number assigned

to the human lineage, 57. An apparent shortening of the Nean-

dertal lineage relative to the human branch is also observed

when all substitutions in the mtDNA are analyzed (Figure S3).
Cell 134, 416–426, August 8, 2008 ª2008 Elsevier Inc. 419



This dearth of Neandertal lineage differences is not clearly con-

centrated in any particular region of the mtDNA (Figure S4A) or

class of substitutions (Figures S4B and S4C), and is not statisti-

cally significant (Supplemental Data). It may reflect stochastic

variation in the amount of substitutions on the two lineages, per-

haps in combination with the fact that the Neandertal mtDNA

is �38,000 years older than the human mtDNA sequence. How-

ever, for amino acid substitutions, we observe a similar number

on the Neandertal (20) and human (18) lineages. Thus, relative to

silent substitutions, more amino acid replacements occurred on

the Neandertal lineage.

To explicitly test for an increase in amino acid replacements on

the Neandertal lineage, we evaluated the evolution of the 12 pro-

tein-coding genes (excluding ND6; see Supplemental Data)

across seven primates (human, Neandertal, chimpanzee, bo-

nobo, gorilla, orangutan, and baboon) with a maximum likelihood

framework. The ratio of amino acid replacements per replace-

Figure 3. Phylogenetic Tree and Divergence Time Estimate of

mtDNA Sequences

(A) Bayesian phylogenetic tree of complete mtDNA sequences of the Neander-

tal, 10 extant humans, one chimpanzee, and one bonobo. Identical topologies

for the Neandertal and chimpanzee/bonobo split are produced by each tree-

building method. The Bayesian posterior probability and the bootstrap support

values are shown for two internal nodes.

(B) Posterior distribution of divergence times at each internal node using a 6–8

Mya for the ape/hominid divergence (blue node). The extant human diver-

gences are shown in black, the Neandertal/human divergence in red, the chim-

panzee/bonobo divergence in yellow, and the ape/hominid in blue.
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ment site (dN) to silent substitutions per silent site (dS) can reveal

the influence of natural selection on protein evolution with low

dN/dS (<<1) indicating purifying selection, and high dN/dS (>1) in-

dicating positive selection. Overall, dN/dS was quite low across

the entire phylogeny (0.051–0.087; Table S3), consistent with

strong purifying selection on mitochondrial proteins in primates

(Hasegawa et al., 1998). However, dN/dS varied significantly

among branches in the phylogeny (all p < 0.0001; Table S3).

While lineage-specific estimates of dN/dS were sensitive to

both the underlying model of sequence evolution and the num-

ber of outgroups considered (see Figure S6 and Table S3), we

consistently observed the highest dN/dS on the Neandertal line-

age, and this value was significantly higher than background

rates in all comparisons (all p < 0.01; Table S3).

To determine if any of the 13 proteins encoded in the mtDNA

show an unusual pattern of evolution in humans since the diver-

gence from the Neandertal, we contrasted the ratio of nucleotide

polymorphisms in the 54 humans to fixed differences to Nean-

dertal at synonymous and nonsynonymous sites (Table 2). Under

a standard neutral model, the ratio of diversity to divergence

should be the same for both classes of sites (McDonald and

Kreitman, 1991). Whereas this is the case for 12 of the protein-

coding genes, COX2 has an excess of amino acid divergence

(p = 0.021), consistent with the action of positive directional se-

lection. However, when corrected for multiple tests of 13 genes,

this yields only suggestive evidence for adaptive evolution of

COX2 (Bonferroni a = 0.0038).

COX2 has experienced four amino acid substitutions on the

human mtDNA lineage after its divergence from the Neandertal

lineage about 660,000 years ago. In order to see if any of these

amino acids vary among humans today, we analyzed human

mtDNA sequences in mtDB (Ingman and Gyllensten, 2006).

At one of the four positions (rCRS position 7868), one of 2704

individuals carries the same base as the Neandertal. Because

Table 1. Number of Synonymous and Nonsynonymous

Substitutions in Each Protein-Coding mtDNA Gene Assigned to

the Neandertal or Extant Human Lineage by Parsimony with the

Chimpanzee as an Outgroup

Gene

Neandertal Extant Human

Synonymous Nonsynonymous Synonymous Nonsynonymous

ND1 4 2 5 2

ND2 6 1 3 1

COX1 8 0 8 0

COX2 0 0 3 4

ATP8 2 1 3 0

ATP6 3 3 1 2

COX3 1 1 3 1

ND3 1 1 5 1

ND4L 3 1 1 0

ND4 5 0 9 0

ND5 7 5 6 4

ND6 1 1 1 0

CYTB 3 4 9 3

Total 44 20 57 18



Table 2. Polymorphism within Humans and Divergence to Neandertal at Synonymous and Nonsynonymous Sites in Protein-Coding

mtDNA Genes

Gene

Fixed

Synonymous

Differences

Human

Synonymous polymorphic

Sites

Fixed

Nonsynonymous

Differences

Human

Nonsynonymous

Polymorphic Sites Neutrality Index

p Value,

Uncorrecteda

ND1 7 19 2 8 1.47 1

ND2 7 30 1 13 3.03 0.419

COX1 13 40 0 8 — 0.184

COX2 2 19 4 3 0.08 0.021

ATP8 4 6 1 2 1.33 1

ATP6 2 22 2 9 0.41 0.575

COX3 3 25 2 4 0.24 0.205

ND3 5 10 1 3 1.50 1

ND4L 2 9 1 1 0.22 0.423

ND4 7 43 0 12 — 0.328

ND5 11 51 7 23 0.71 0.58

ND6 1 20 0 5 — 1

CYTB 10 26 5 17 1.31 0.764

The neutrality index value (Rand and Kann, 1996) is the ratio of polymorphism to divergence at nonsynonymous sites versus this ratio at synonymous

sites. Values smaller than 1 indicate an excess of nonsynonymous divergence. Values greater than 1 indicate excess nonsynonymous polymorphism

within humans.
a Fisher’s exact test.
mtDNA is inherited without recombination, and because the Ne-

andertal mtDNA falls outside the variation of modern human

mtDNA, this single modern human observation represents a re-

version to the ancestral state seen in Neandertals and chimpan-

zees. Thus, these four amino acid substitutions occurred in the

relatively short period after the divergence of Neandertal and

extant human mtDNAs and before the most recent common an-

cestor of current human mtDNAs. The observation of four nonsy-

nonymous substitutions on the modern human lineage, and no

amino acid changes on the Neandertal lineage, stands in con-

trast to the overall trend of more nonsynonymous evolution in

Neandertal protein-coding genes (Table 1), and deserves con-

sideration.

Subunit 2 of Cytochrome c Oxidase
COX2 encodes subunit 2 of the cytochrome c oxidase, or com-

plex IV, of the inner mitochondrial membrane. Complex IV cata-

lyzes the reduction of molecular oxygen to water with electrons

from cytochrome c and protons from within the mitochondrial

matrix. By acting as a proton pump (Belevich et al., 2006), it

maintains a proton gradient across the mitochondrial inner mem-

brane, which drives the phosphorylation of ADP to ATP (Mitchell,

1966; Reid et al., 1966). It has previously been noted that genes

encoding various components of the electron transport chain

evolve quickly in primates (Doan et al., 2004; Grossman et al.,

2004).

To determine what functional effects, if any, these amino acid

substitutions may have, we examined the crystal structure of the

bovine cytochrome c oxidase complex (Figure 4) (Muramoto

et al., 2007). All four substitutions are spatially far from function-

ally critical parts of the protein, such as the cytochrome c binding

area and the bimetallic CuA center that passes electrons from cy-

tochrome c to COX1. However, three of them interact with the
nuclear-encoded COX5a and COX6c subunits, which are

thought to perform regulatory functions. It has been noted that

COX5a evolves fast in primates (Uddin et al., 2008). However,

the two COX5a sites that differ between humans and chimpan-

zees are not in close proximity to COX2. It may also be of rele-

vance that two of the four amino acid residues that are specific

to modern humans relative to Neandertals are variable among

apes, and all four are variable when Old World monkeys are

considered (Figure 4).

DNA Diagenesis
The 8341 mtDNA sequences comprising the Neandertal

mtDNA assembly allow us to gauge a number of factors of rel-

evance to the state of preservation of mtDNA in this late Pleis-

tocene individual. These estimates have an advantage over

previous ones (e.g., Briggs et al., 2007) that were based on in-

ferences from alignments to human and chimpanzee genome

sequences, and were thus potentially affected by alignment

uncertainties or uncertain inferences about evolutionary

processes.

One feature of interest is that the retrieval of DNA across the

mtDNA genome is more uneven than expected under a model

of random sampling (Lander and Waterman, 1988) (Figure 5A).

The variation in DNA retrieval is largely explained by a positive

correlation (r = 0.49) between GC content and the number of re-

covered fragments (Figure 5C). Furthermore, for shorter frag-

ments, GC content is negatively correlated with length

(Figure 5B). This may be due to denaturation of short, AT-rich

fragments during library preparation.

Because the GS FLX read length of about 250 nucleotides is

much longer than the average sequence length of 69 nucleo-

tides, fragmentation points can be inferred for nearly all se-

quences. As previously reported (Briggs et al., 2007), purines
Cell 134, 416–426, August 8, 2008 ª2008 Elsevier Inc. 421



are overrepresented before, and pyrimidines after, fragmenta-

tion points (Table S4). This is consistent with depurination in

ancient DNA, which would induce strand breaks. When dinu-

cleotides made up of the bases immediately 50 and 30 of frag-

mentation points are analyzed (Table S4), the most overrepre-

sented bases are G 50 of breaks and T 30 of breaks, where

breaks occur �2.9 times more often than would be expected if

fragmentation was random, and�2.1 times more often than pre-

dicted by the individual contributions of G and T separately. Fur-

ther investigations are necessary to understand the biochemical

basis for this.

When we compare the observed rates of nucleotide misincor-

porations to maximum likelihood estimates for the expected

numbers of misincorporations based on a model that we previ-

ously developed (Briggs et al., 2007), we find the model fits the

overall data well (Figure S7). However, longer fragments have

higher misincorporation rates (and, by inference, higher deami-

nation rates), and shorter fragments have lower misincorporation

rates than predicted by the model. This could be due to a re-

duced power to detect and align fragments that are both short

and contain nucleotide misincorporations. Alternatively, it could

represent a difference between shorter and longer fragments, for

example, if longer fragments have, on average, longer single-

stranded overhanging ends.

Figure 4. COX2 Protein Sequence Differences between Neandertal

and Modern Humans in Structural Context

The amino acid positions of the four differences are shown in red. The copper

center of COX2 (CuA) is also shown. The amino acid at each position in some

primate and the cow sequences (from which the structure [PDB identifier:

2EIK] is derived) are indicated.
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DISCUSSION

Neandertal Genetic History
The complete Neandertal mtDNA genome confirms and extends

previous insights into the genetic history of Neandertals. First, it

confirms that the Neandertal mtDNA falls outside the variation of

extant human mtDNA variation. Second, it shows that the Nean-

dertal mtDNA diverged from the extant human mtDNA lineage on

the order of 660,000 years ago. Thus, the most recent common

ancestor of human and Neandertal mtDNA lived more than two

or three times as long ago as the most recent common ancestor

of extant human mtDNAs.

A striking observation from the analysis of the 13 protein-cod-

ing genes in the mtDNA is that the ratio of nonsynonymous to

synonymous evolutionary rates is significantly higher on the Ne-

andertal lineage. One plausible explanation is that Neandertals

had a smaller effective population size, and thus less effective

purifying selection than humans. Previous studies have reported

that mtDNA dN/dS ratios tend to be higher within than between

species of great apes, including extant humans (Nachman

et al., 1996; Templeton, 1996; Hasegawa et al., 1998; Kivisild et al.,

2006). These results suggest that slightly deleterious amino

acid variants segregate within populations, and that differences

in the intensity of purifying selection may affect mtDNA dN/dS

ratios. Previous estimates based on mean pairwise differences

(MPD) within the mtDNA HVRI suggested that Neandertals

(MPD = 5.5) had an effective population size similar to that of

modern Europeans (MPD = 4.0) or Asians (MPD = 6.3), but lower

than that of modern Africans (MPD = 8.1) (Krause et al., 2007b).

Recent population genetic analyses have revealed a higher

mtDNA amino acid substitution rate (Elson et al., 2004) and rel-

atively more deleterious autosomal nuclear variants (Lohmueller

et al., 2008) in Europeans than in Africans, presumably due to

the smaller effective population size of Europeans. Thus, it

seems plausible that Neandertals had a long-term effective pop-

ulation size smaller than that of modern humans. Population re-

ductions caused by recurrent glaciations in Eurasia during

Neandertals’�400,000 years of existence may have contributed

to this. Further work will reveal if a small effective population size

is compatible with the extent of nucleotide diversity seen in the

Neandertal nuclear genome.

A tantalizing finding is that, when all substitutions in the mtDNA

are analyzed, the Neandertal mtDNA lineage is shorter than the

human lineage by approximately 20% (Figure S3B). It is tempting

to speculate that this is due to the fact that the Neandertal

mtDNA is�38,000 years older than the extant human mtDNA se-

quences to which it is compared. However, under the assump-

tion that the evolutionary dates are reasonably accurate, the

reduction in length is about three times as large as would be ex-

pected if it was entirely due to the age of the fossil. It should be

noted that, for small evolutionary distances such as these, there

is a large stochastic component to phylogenetic branch length.

Thus, although the evolutionary dates are clearly dependent on

many tenuous assumptions, it seems reasonable to assume

that the majority of the discrepancy in length between the Nean-

dertal and extant human mtDNA lineages is due to stochastic dif-

ferences in the amounts of substitutions that have come to fixa-

tion on the two lineages.



Figure 5. Sequence Coverage and Base Composition of the Neandertal mtDNA

(A) The expected (gray) and observed (red) distribution of sequence depths in the Neandertal mtDNA assembly at 34.9-fold over all coverage.

(B) The length distribution of sequences (yellow) and, for each length bin, the mean ± SD of GC content (blue).

(C) G + C content within a sliding window 30 bp 50 and 30 of each position (blue) and the observed coverage (red) at each position.
Another interesting observation is that COX2 stands out among

proteins encoded in the mitochondrial genome as having experi-

enced four amino acid substitutions on the modern human

mtDNA lineage. Further work is warranted to elucidate the func-

tional consequences of these amino acid substitutions. However,

all these substitutions are in regions of the protein that, based on

the crystal structure, do not have any obvious function, and they

are variable among primates. Hence, they may represent either

minor adaptive advantages, perhaps of regulatory relevance, or

have no significant functional consequences for mitochondrial

function. Unless other evidence for their importance becomes

available, we see no need to invoke positive selection to ac-

count for the evolution of COX2 on the human lineage.

DNA Sequence Authenticity
Two features of ancient DNA in general, and Neandertal DNA in

particular, may cause errors in nucleotide sequences in excess

of what is expected from modern DNA. First, chemical modifi-

cation in the ancient DNA may cause nucleotide misincorpora-

tions, and, second, the unintended presence in the experiments
of DNA from extant humans may be mistaken for Neandertal

DNA. In the case of the Neandertal mtDNA genome sequences

presented here, high average coverage of the random se-

quence reads in combination with amplification and sequencing

of positions where coverage is low, or where longer nucleotide

homopolymers may cause base calling problems, make us con-

fident that the error rates from both these sources are low.

Thus, the amount of data now accumulated for the Neandertal

mtDNA allows extrapolations to what will be required to arrive at

a reasonably reliable nuclear DNA sequences from the Nean-

dertal.

With respect to nucleotide misincorporations, the current data

show that errors causing a transition occur at positions carrying

either a C or a G base in �2.7% of sequence reads. By contrast,

all other errors occur in less than 0.1% of reads (Figure S8). Thus,

C-to-T and G-to-A misincorporations are the predominant se-

quencing errors that need to be considered in terms of an ancient

genome assembly. Since these misincorporations are drastically

accumulated toward the 50 and 30 ends of molecules (Figure S7),

respectively, and since there is a tendency for strand breaks in
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the ancient DNA to occur 30 of purines and, in particular, at GT

dinucleotides (Table S4), this might conceivably result in an ac-

cumulation of misincorporations at certain nucleotide positions,

where even multiple retrieval of the same sequence may then not

always allow the correct base to be determined. However, since

GT dinucleotides cause only an�3-fold increase in the likelihood

of a break compared with random positions in the genome, al-

ready rather low sequence coverage makes this effect unlikely

to cause errors in the assembled sequence. In fact, although it

has been argued that C-to-T misincorporations are accumulated

at particular sites in ancient mtDNA molecules (Gilbert et al.,

2003), no positions in the mtDNA assembly have a mixture of ob-

served bases that would confuse assembly (Figure S9), and

higher relative amounts of mismatches correlate with lower se-

quence coverage. This suggests that stochastic events among

few recovered sequences rather than hotspots for DNA modifi-

cations are the basis of these observations. For example, the

least supported position of the Neandertal mtDNA assembly

(position 5476) is supported by eight C observations and three

T observations (Figure S9). Thus, we conclude that nucleotide

misincorporations will not impede the determination of reliable

Pleistocene genome sequences, provided that reasonable se-

quence coverage is achieved.

Contamination with extant human DNA is the other dominant

source of erroneous Neandertal sequences. Given the high cov-

erage and the fact that the best estimate of the contamination

rate here is 0.5% (with an upper 95% confidence limit of

0.87%), we do not expect contamination to affect the mtDNA se-

quence assembly to any appreciable level. Under the assump-

tion that the Neandertal mtDNA sequence is reliable, it is a useful

tool for gauging contamination when sequencing the Neandertal

nuclear genome. Previously, assays to determine contamination

within Neandertal fossil extracts were limited to the HVRI, which

carry few positions where extant humans differ from Neander-

tals. By contrast, the complete Neandertal mtDNA now offers

133 such positions. This enables a reliable estimation of mtDNA

contamination by analyzing sequence reads from 454 libraries,

rather than by PCR-based assays of the DNA extracts. For ex-

ample, when we do this in a small preliminary data set initially

published from this fossil (Green et al., 2006), 10 of 10 sequences

are classified as Neandertal. However, in further unpublished se-

quencing runs from that library, 8 out of 75 diagnostic sequences

derive from extant human mtDNA, suggesting a contamination

rate of �11% (CI = 4.7%–20%). This is in agreement with the

suggestion (Wall and Kim, 2007) that contamination occurred

in that experiment. That library was constructed outside our

cleanroom facility and before the introduction of the Neander-

tal-specific key, which is crucial for the detection of contamina-

tion by other 454 libraries, and was therefore not used for the

subsequent Neandertal genome sequencing project (Briggs

et al., 2007). However, with the help of the mtDNA presented

here, such levels of contamination are now easily detectable

from 454 sequencing runs. Nevertheless, since the ratios of

nuclear to mtDNA may differ between endogenous and

contaminating DNA, it is of importance to identify nuclear DNA

sequences diagnostic for Neandertals. Data collected from

Vindija bone 33.16 now begin to make this possible (Krause

et al., 2007a).
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Outlook for Nuclear Genome Sequencing
Irrespective of the fact that the amino acid substitutions in the

human COX2 protein may not be of functional significance,

they illustrate the power of Neandertal DNA sequences for find-

ing accumulations of recent evolutionary changes in human

genes. A genome-wide analysis of human and Neandertal genes

holds the promise to identify many such cases for nuclear genes.

However, whereas the mtDNAs of extant humans are monophy-

letic with respect to Neandertals, this is not expected to be the

case for most nuclear genes (Pääbo, 1999). This fact will be help-

ful for the identification of recent positive selection in humans. If,

for example, a completed selective sweep affected a gene in hu-

man ancestors after their separation from their common ances-

tors with Neandertals, extant human diversity in that region of the

genome would coalesce to the exclusion of Neandertal alleles.

Consequently, the combination of the accumulation of recent

human substitutions in coding genes or conserved sequence el-

ements along with reduced human diversity that excludes Nean-

dertals may be a hallmark for genes and genomic regions that

have been important in the emergence of fully modern humans.

Technically, the Neandertal mtDNA presented here is a useful

forerunner for the sequencing of the Neandertal nuclear genome.

First, the mtDNA assembly and the sequences of which it is com-

prised can be used to tune the parameters of models of DNA dia-

genesis. These parameters, in turn, can then be used to properly

detect and align ancient Neandertal DNA sequence to the human

genome. This will be particularly crucial before multifold cover-

age of the Neandertal nuclear genome is achieved. Second,

the high coverage allows a first tentative estimate of how deeply

a Neandertal genome would need to be sequenced in order to

arrive at a reasonable accuracy of the sequence, given the bi-

ased retrieval of sequences (Figure 5), the misincorporation pat-

terns (Figure S8), and other features of the DNA extracted from

Neandertal bones. By resampling our sequences to simulate dif-

ferent depths of coverage, we find that, to achieve an error-rate

of 1 in 10,000, 12-fold coverage would be required (Figure S10).

Although all factors that effect ancient DNA error rates are un-

likely to be identical between mitochondrial and nuclear DNA

(e.g., homopolymer lengths and DNA methylation), this lends

us confidence that a reliable Neandertal genome sequence will

be achievable.

EXPERIMENTAL PROCEDURES

DNA Extraction

DNA was extracted as previously described (Serre et al., 2004). After the first

DNA extraction from 100–200 mg of bone, a second DNA extraction (‘‘re-ex-

tract’’) was carried out from the remaining bone pellet, as previously described

(Rohland and Hofreiter, 2007a, 2007b), except that incubation was overnight at

56�C. One extract of the Vindija 33.16 bone (Vi80 [33.16] 120402; Figure S1) as

well as the two re-extracts (Vi80 [33.16] 120402re, Vi80 [33.16] 031201re;

Figure S1) were used for 454 library preparation and high-throughput sequenc-

ing. For PCR verification of the initial sequence assembly, DNA was extracted

from 90 mg of the bone, as previously described (Rohland and Hofreiter,

2007b).

Assembly of the mtDNA Sequence

MtDNA sequences were identified with megablast (Zhang et al., 2000) and was

required to be R30 nucleotides long and show R90% identity to the reference

human mtDNA (GI: 17981852) or a version of this sequence carrying the Vindija



HVRI. mtDNA alignments, which had to be at least as high scoring as the best

alignment against the human nuclear genome, were merged, and regions

where the assembly was problematic were amplified by PCR. While nuclear in-

sertions of mtDNA could, in theory, confound the assembly, this is unlikely for

several reasons (see Supplemental Data). The Neandertal mtDNA sequence is

available under accession number AM948965.

Evolutionary Analyses

We aligned Neandertal, human, ape, and monkey mtDNAs (identifiers in Sup-

plemental Data), and estimated trees by using neighbor-joining, maximum par-

simony, maximum-likelihood, and Bayesian approaches. Support for nodes

was assessed with bootstrap replicates, and a likelihood ratio test was used

to test the clock assumption. In order to date mtDNA divergences, we esti-

mated the posterior distribution of divergence times assuming that chimpan-

zees and humans diverged 6–8 million years ago. For protein-coding analyses,

we concatenated 12 genes, excluding ND6 and regions with overlapping

reading frames and codons with insertion-deletion variation, and performed

dN/dS analyses using an ML framework (Yang, 2007).

ACCESSION NUMBERS

The Neandertal mtDNA sequence has been deposited in the EMBL database

with accession number AM948965.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, ten fig-

ures, and five tables and are available with this article online at http://www.

cell.com/cgi/content/full/134/3/416/DC1/.
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Pääbo, S., Poinar, H., Serre, D., Jaenicke-Despres, V., Hebler, J., Rohland, N.,

Kuch, M., Krause, J., Vigilant, L., and Hofreiter, M. (2004). Genetic analyses

from ancient DNA. Annu. Rev. Genet. 38, 645–679.
426 Cell 134, 416–426, August 8, 2008 ª2008 Elsevier Inc.
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