Animal Behavior: Ape Curiosity on Camera

Sofia Ingrid Fredrika Forss*, Alba Motes-Rodrigo, and Claudio Tennie
Faculty of Science, Department for early prehistory and quaternary ecology, University of Tübingen, Germany
*Correspondence: sforss@yahoo.com
https://doi.org/10.1016/j.cub.2019.02.055

How animals respond to novel objects may reflect their overall cognitive and behavioral disposition. A study using camera traps reveals that different species of wild ape respond to novelty differently.

How animals react to novel situations, foods or objects reflects a balance between neophobia (novelty avoidance) and neophilia — the drive to approach and explore, in other words components of curiosity. As such, animals behave according to the costs and benefits of exploring something new, potentially dangerous. In a new study in this issue of Current Biology, Ammie Kalan, Hjalmar Kühl and colleagues [1] report the behavioral responses of wild chimpanzees, bonobos and gorillas to camera traps.

It is difficult to study reactions to novelty in the wild — usually this was thought to demand field experiments where one must be careful not to habituate wild populations, e.g. through food provisioning or through association with humans. Consequently, studies aiming to address curiosity should best avoid direct human observation. The use of video camera traps, applied by Kalan and colleagues [1], is a relatively non-invasive, yet effective approach to obtain genuine reactions to novel items in wild apes. Camera traps also enable researchers to address novelty responses with the great unknown — wild animals that are not habituated to humans. Kalan and colleagues [1] studied an impressive 43 different groups of the three African ape species distributed across 14 sites (Figure 1).

The authors found that the three species of African apes differed in their responses to a novel object: camera traps. Apes rarely touched the camera traps, which indicates that neophilia, or the motivation to explore, was low in all three species. Compared to chimpanzees, bonobos and gorillas were more likely to look at the camera traps. Bonobos were also the most neophobic species, producing more alarm calls and other fearful behaviors than the other apes. Overall, immatures looked towards camera traps the most and individuals in smaller parties looked at the camera traps for a shorter time than lonely apes. Apes showed less interest in camera traps the closer they lived to long-term research sites. As such the authors suggest environmental factors to reflect part of the site variation in responses. Moreover, the authors propose that the observed species differences in camera trap responses are due to variation in social structure, such as lack of clear leadership in bonobo communities contributing to increased neophobia in this species. Studies on novelty responses in wild primates are rare, and comparisons between species are so far lacking (but, see [2]), making the contribution of Kalan and colleagues [1] highly valuable.

Using camera traps as stimuli is a useful first step to determine how artefacts placed in nature affect wild ape behaviors. But one could argue that the (camouflaged) camera trap itself represents a relatively uninteresting novel object for wild apes. Accordingly, the authors report no real fearful behaviors (except a few bonobo alarm calls). Thus, the most common recorded responses — looking impulses — are best described as indifference rather than truly neophobic or neophilic. This highlights the importance of what kind of stimulus is used when assessing novelty response and explorative behavior [3,4]. However, using camera traps as stimuli has the advantage that it provides a stimulus that is consistent across different sites. Such a low degree of variation (in appearance) is generally not possible to achieve when humans (and their behavior) are the stimuli. Thus, while we also need to use multiple stimuli when we aim to assess curiosity, camera traps are still informative on how the presence of humans and our artefacts affect wild animals’ behavior.

The study of Kalan and colleagues [1] nicely complements previous results reporting conservative behavior towards novelty in wild orangutans. Like African apes, wild orangutans mostly look at novel objects and only touch them in rare cases — after observing humans doing so — suggesting orangutans use social cues to overcome neophobia [5]. The study by Kalan and colleagues [1] also hints to within-species differences between captive and wild apes. Wild apes spend most of their wake time searching for food, mating partners, or shelter in natural habitats beset with risks. Consequently, for wild apes, curiosity can be much more costly than for their captive conspecifics, who benefit from a safer habitat and have more time to invest in exploration. This within-species discrepancy is referred to as the captivity effect [5–7] and explains the increased curiosity observed in captive housed apes [8]. The study by Kalan and colleagues [1] thus stresses the importance of studying curiosity in natural habitats, because solely captive data can generate a biased picture of ape curiosity. The between-species differences found by Kalan and colleagues [1] in wild apes, where bonobos showed the highest frequency of neophobic responses, match with some previous results from captivity, describing bonobos to be more risk averse than chimpanzees [9,10]. However, other studies on novel food response found that captive chimpanzees show similar food neophobia as bonobos and more than gorillas [11,12].

Kalan and colleagues [1] assume both large dietary variation and differences in innovative abilities across the tested species, as chimpanzees are the most proficient African ape tool users. Consequently, the authors expected chimpanzees to show higher neophilia...
The study by Kalan and colleagues [1] draws attention to the fact that, so far, no single hypothesis can explain the variation in exploration tendency and neophobia in great apes. Ideally, future studies can disentangle environmental and social factors to clarify the relationship between exploration drive and neophobia and the conditions that elicit curiosity. Understanding curiosity in non-human primates will also shed light on the arguably extreme case of human exploration and innovation ability. Finally, natural habitats are fast changing due to human activity, causing wild populations to face new challenges. For species conservation purposes, it is now more urgent than ever to understand how different species react when faced with habitat modifications incorporating exposure to novelty.

REFERENCES

Evolution: The Battle of the First Animals

Allison C. Daley* and Jonathan B. Antcliffe
Institute of Earth Sciences, University of Lausanne, Geopolis, CH-1015 Lausanne, Switzerland
*Correspondence: allison.daley@unil.ch
https://doi.org/10.1016/j.cub.2019.02.031

Ctenophores or ‘comb-jellies’ are marine animals whose relationship to other phyla is uncertain, yet important for understanding major steps in animal evolution. Fossil ctenophores from the Cambrian indicate that ctenophores may have evolved from a sessile, cnidarian-like ancestor.

The origin and earliest evolution of animals has been the subject of open warfare in the natural sciences in recent decades. One important battlefield has been the unresolved relationship between five animal groups — ctenophores, cnidarians, placozoans, poriferans and bilaterians (essentially all other animals). This (phylogenetic) Battle of the Five Armies is as cacophonous and confusing as anything that Peter Jackson produced in recent years [1]. Yet an uneasy truce has recently emerged concerning the position of the sponges (Porifera), returning to the antebellum state with a monophyletic group of sponges at the base of animal evolution [2–5]. Otherwise, there is little resolution. These five animal groups are highly derived, with over 500 million years separating their origination from their modern anatomy. The ctenophores are particularly rogue and querulous, with their molecular sequence seemingly switching sides so often that its true allegiance is difficult to discern [6–7]. Fortunately, we also have fossils. These provide another tangible record of evolution and are particularly abundant and well preserved during the first major burst of animal evolution, the Cambrian explosion. A new study in this issue of *Current Biology* by Yang Zhao, Jakob Vinther and colleagues [8] describes bizarre Cambrian fossils and places them in the ctenophore stem lineage, forming a close alliance between ctenophores and cnidarians (Figure 1).

The fossils of the Cambrian explosion, found at sites such as Burgess Shale and Chengjiang, are renowned not only for their exquisite preservation of soft-bodied animals in fine anatomical detail, but also because of their enigmatic nature. The most famous of these are the ‘bizarre crab’ Anomalocaris and the ‘mind-bending’ Hallucigenia. The fossils described by Zhao and colleagues [8] are just as enigmatic, marking this work as an important contribution to the field owing to the detailed descriptions and images of a new taxon, *Daihua sanqiong*, and of enlightening new specimens of previously described taxa, including *Xiangangia*, *Dinomischus* and *Siphusauctum*. This last taxon has colloquially been called the ‘tulip animal’, which is a fairly accurate visual description of its overall anatomy [9]. The tulip-shaped body of *Siphusauctum* consists of a narrow stem topped by a rounded, bulbous main body chamber, which contains the mouth and gut, and is adorned with ‘petals’ represented by six radially-arranged tentacles covered in rows of hair-like protrusions, or cilia [8–9]. *Siphusauctum* was previously identified as a bilaterian but could not be placed in any specific phylum [9]. Another taxon that has yet to find a home in any animal phylum is *Dinomischus*, which is also tulip-like but has a sclerotized organic skeleton not found in the entirely soft-bodied *Siphusauctum* [9]. The new taxon *Daihua* and the previously described *Xiangangia* [10] are both stalkless, but have a sclerotized organic skeleton supporting an expanded body region with long tentacles bearing pinnules with rows of cilia [8]. *Xiangangia* had previously been placed in the stem lineage of Cnidaria [10].

By comparing these enigmatic fossil taxa with definitive ctenophores, the phylogenetic analysis of Zhao and colleagues [8] places *Xiangangia*, *Daihua*, *Dinomischus* and *Siphusauctum* in the stem lineage to ctenophores. This resulting scenario of evolution suggests that ctenophores originated from sessile benthic, sea anemone-like ancestors, with *Xiangangia* then *Daihua* branching off basally, followed by the stalked *Siphusauctum* and *Dinomischus*, before the evolution of pelagic ctenophores. This sequence of events requires numerous