In many group-living mammals, mothers may increase the reproductive success of their adult sons even after they are nutritionally independent and fully grown [1]. However, whether such maternal effects exist for adult sons is largely unknown. Here we show that males have higher paternity success when their mother is living in the group at the time of the offspring’s conception in bonobos (N = 39 paternities from 4 groups) but not in chimpanzees (N = 263 paternities from 7 groups). These results are consistent with previous research showing a stronger role of mothers’ presence for adult sons in a species where mothers routinely behave in ways that plausibly increase offspring fitness, but not in a closely related species where mothers do not often behave this way, this would increase our confidence that the observed maternal effect is at least partly environmental rather than solely genetic.

Here we examine the relationship between mother presence and paternity success in bonobos and chimpanzees, two closely related male-philopatric and female dispersal species. In both species, although mothers live alongside their sons for their entire adult lives and help them in male–male competition, a large body of evidence suggests that bonobo mothers also behave in ways that potentially increase the paternity success of their sons. For example, bonobo mothers frequently bring their sons into close spatial proximity with other males [6], and form coalitions with their sons to help then acquire and maintain high dominance rank [7]. Such maternal behavior is more likely to be effective in bonobos, where the sexes are co-dominant and the highest ranks are consistently occupied by females, than in chimpanzees, where all adult males are dominant over all females [8]. We found that bonobo males with a mother living in the group at the time of the conception were 1.26 times more likely to sire offspring; Figure 1; Figure S1). This species difference in the relationship between mothers’ presence and paternity success was statistically significant (two-way interaction between species and mother presence, GLMM estimate ± SE = –1.54 ± 0.50, p < 0.01; see the Supplemental Information), and was observed while controlling for species differences in the number of males that had a mother present (55% of bonobos and 41% of chimpanzees), the number of competing males (averages of group averages were: X bonobos = 6.9; X chimpanzees = 15.5), and male age (average sire age: bonobos = 21.8y; chimpanzees = 23.3y) at the time of conception.

Overall, the sire’s mother was present more than twice as frequently during conception in bonobos (31/39 = 79.5%) than in chimpanzees (26/54 = 48.1%).
than in chimpanzees (92/263 = 34.9%) (Table S1).

Findings in humans and orcas linking mothers’ presence and behavior to the fitness of lineal descendants (offspring and grandoffspring) have been interpreted as contributing to the evolution of the unusual pattern of extended longevity and a substantial female post-reproductive lifespan observed in these taxa [3,4]. Although long-term surviviorship data are not yet available for wild bonobos, data from captivity suggesting that female longevity may be higher in bonobos than chimpanzees are consistent with this hypothesis [9]. In addition, theory predicts that a female post-reproductive lifespan is more likely to evolve under mating and dispersal systems (including male philopatry and female dispersal) where the expected number of close relatives in the group, and thus the expected benefits of ceasing reproduction to assist them, increase with a female’s age [10]. However, although bonobo females live in male-philopatric and female-dispersal societies, and can increase the number of grandoffspring they have through their sons, they apparently do not have a substantial post-reproductive lifespan. More research on interspecific variation in the costs and benefits of breeding and helping will be necessary to explain why a substantial female post-reproductive lifespan only occurs in some of the species where the dispersal system and resulting age structure of relatedness would appear to favor its evolution [10].

SUPPLEMENTAL INFORMATION

Supplemental Information includes one figure, one table, experimental procedures, author contributions, and supplemental references, and can be found with this article online at https://doi.org/10.1016/j.cub.2019.03.040.

ACKNOWLEDGEMENTS

We thank the responsible authorities in the host countries for permitting our research, including: Institut Congolais pour la Conservation de la Nature, Ministère de l’Éducation Nationale, Democratic Republic of Congo; Ministry of Scientific Research and Technology and Centre de Recherche en Ecologie et Foresterie, Democratic Republic of Congo; Ivorian Ministry of Environment and Forests and Ministry of Higher Education and Scientific Research and the Office Ivorien des Parcs et Reserves; the Tanzania National Parks, Wildlife Research Institute, and Commission for Science and Technology; the Uganda Wildlife Authority, Uganda National Council for Science and Technology and Makerere Biological Field Station. We thank Roger Mundry for statistical advice and the field staff of all projects for making long-term data collection possible. M.S. was supported by the Max Planck Society, the National Geographic Society and the Wenner-Gren Foundation, and partially supported by SNF. Work at LuiKotale was supported by the Max Planck Society, the L.S.B. Leakey Foundation, and National Geographic Society. Work in Lomako was supported by the Max Planck Society, the German Academic Exchange Service and the German Science Foundation. The study at Wamba is financially supported by the Japanese Ministry of the Environment Global Environment Research Fund (D-1007 to T.F.), the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (26257408 and 22255007 to T.F., 25304019 to C. Hashimoto., and 16H02753 and 25257407 to T. Yamoto), the JSPS Core-to-Core Program (2009–2011, 2012–2014, and 2015–2017 to T.F.), the JSPS HOPE Project of the PRI of Kyoto University (to T. Matsuzawa), the JSPS Strategic Young Overseas Visits Program for Accelerating Brain Circulation (S2508), the JSPS Grant-in-aid for JSPS fellows (17J09827 to S.I.) and the Leading Graduate Program in Primatology and Wildlife Science of Kyoto University. Long-term sampling at Kanyawara was supported by the U.S. National Science Foundation (grants BCS-0849380, BCS 1355014 and IOS-ITREB 1052693), National Institutes of Health grants AI058715 and R01AG049395, the Leakey Foundation, the National Geographic Society, and the Wenner-Gren Foundation. Long-term research at Ngogo was supported by NIH Grant R01AG049395, the Leakey Foundation, the President’s Strategic Initiative Fund of Arizona State University, the Max Planck Society, and the Institute of Human Origins. The Royal Zoological Society of Scotland provides core support for the Budongo Conservation Field Station. The Max Planck Society supports research at Tai. C.C. is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 679787). Fieldwork and sampling at Gombe is funded primarily by the Jane Goodall Institute with additional support from the National Science Foundation (DBS-9021946, SBR-9319909, BCS-0648481, IOS-1052693, IOS-1457260) and the National Institutes of Health (R01 AI50529, R01 AI58715, P30 AI27767). E.W. was supported by the Elmer C. Birney and Florence Rothman Fellowships, the Dayton and Wilkie Natural History Fund and the NIH/NIAID, Ruth L. Kirschstein National Research Service Award (NRSA) (F32 AI085959).

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES


1Max Planck Institute for Evolutionary Anthropology, Department of Primatology, Deutscher Platz 6, 04103 Leipzig, Germany.
2University of New Mexico, Albuquerque, NM 87131, USA.
3Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan.
4John Moore University, School of Natural Sciences and Psychology, Byrom Street, Liverpool, England.
5Tufts University, Department of Anthropology, 419 Boston Ave, Medford, MA 02155, USA.
6Duke University, Evolutionary Anthropology, Durham, NC 27708, USA.
7Harvard University, Human Evolutionary Biology, 11 Divinity Ave, Cambridge, MA 02138, USA.
8Washington University, Department of Anthropology, 1 Brookings Dr, St. Louis, MO 63130, USA.
9Université de Neuchâtel, Avenue du Premier-Mars 26, 2000 Neuchâtel, Switzerland.
10Arizona State University, Institute of Human Origins, 951 Cady Mall, Tempe, AZ 85281, USA.

E-mail: surbeck@eva.mpg.de