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SCG has recently emerged as a field, thanks to the development 
of an exciting set of tools that enable scientists to explore cel-
lular complexity in cell cultures and tissues and to reconstruct 

differentiation processes1,2. In parallel, enormous progress has been 
made in the engineering of human cell types and tissues from plu-
ripotent stem cells (PSCs) in culture. In this review, we argue that 
SCG approaches offer new opportunities to test existing differentia-
tion protocols and their limitations. The resulting inferences could 
guide strategies to reverse-engineer human organs and explore dis-
ease mechanisms.

2D and 3D strategies to engineer human cell types
PSCs grown in 2D culture can be induced to become specific 
cell types through a regimen of developmental signaling cues, or 
through the forced expression of cell-type-defining transcription 
factors (TFs)3,4. In addition, differentiated somatic cells can be 
directly converted to another lineage through the expression of TFs 
or microRNAs, or the application of small molecules5–7. Many cell 
types generated via 2D approaches have been used to investigate 
mechanisms that control differentiation and barriers to plasticity; 
in some cases they have been used to model disease, and even to 
regenerate damaged tissues8–10.

Of course, human tissues are 3D. They are composed of many 
different cell types that signal to each other and coordinate func-
tions at the tissue and organ levels. Human PSCs have been shown 
to self-organize into complex 3D structures, so-called organoids, 
that can recapitulate the morphology and some functionality of tis-
sues including eye11, brain12, liver13, stomach14, intestine15, kidney16, 
and others. Organoid technologies offer great promise for the mod-
eling of human development and disease, and scientists are starting 
to assemble modular developing units of tissue (such as ventral and 
dorsal telencephalon17,18) to create controlled intertissue interac-
tions. The ultimate goal is to connect multiple organs into systems 
for the study of human physiology.

However, there are many bottlenecks and challenges in human cell 
and tissue engineering. It is often unclear how similar an engineered 
cell or tissue is to its in vivo counterpart, and for many cell and tissue 
types, existing protocols are inefficient or no protocol exists yet. Even 
in organoids, it is clear that many tissue-resident cells are not present 

or sustained in the 3D microenvironment. In the following sections, 
we discuss how SCG can address these shortcomings.

Single-cell atlases are optimal references for engineering
It is incredible that the first demonstration of transcriptome 
sequencing from a single cell was published only 9 years ago19. Since 
that time, high-throughput single-cell RNA-sequencing (scRNA-
seq) technologies have been used to generate cell atlases from many 
mouse20–24 and human tissues25–28. These efforts have paved the way 
for the Human Cell Atlas, a major initiative to systematically catalog 
the molecular profiles of each cell type in every human organ and 
tissue, at multiple developmental time points and across different 
individuals29. These reference maps may serve as a basis for under-
standing human health and for diagnosing, monitoring, and treat-
ing disease. Atlas efforts can also serve as a reference for cell and 
tissue engineering, and enable quantitative comparisons between 
engineered and ‘real’ cells (Fig. 1a).

Conventional strategies to assess how well engineered cells and 
tissues recapitulate primary human counterparts have generally 
focused on immunohistochemistry, morphology, cell behavior, and 
other functional readouts. Transcriptome measurements from bulk 
samples have also been useful for benchmarking the engineering 
process. However, scRNA-seq can provide an additional quantita-
tive framework to assess the accuracy, precision, and efficiency of 
cell and organ engineering. First, scRNA-seq can be used to decon-
struct the cellular composition of the engineered cells or tissue, and 
the identified cell states can then be compared with those of the 
primary counterparts from the reference atlas (Fig. 1b). One can 
quantitate the accuracy (the fraction of the in vitro transcriptome 
that resembles that of the corresponding primary cell), precision 
(the ratio of target to off-target lineages in engineered cell cultures), 
and efficiency (the proportion of engineered cells that productively 
advance along the target lineage path) of the engineering process. 
Furthermore, one can ascertain which cell states are missing from 
an in vitro tissue. Finally, one can reconstruct developmental trajec-
tories and assess whether the path that cells take in vitro is the same 
as the one they take in vivo.

There are a number of challenges in comparing reference and 
engineered systems. Ideally, all data should be generated with the 
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same chemistry and technical platform. However, diverse meth-
ods exist for the generation of single-cell transcriptomes, and this 
can lead to technical differences that confound quantitative com-
parisons. Computational approaches are being developed that allow 
datasets generated via different methods or from different species 
to be integrated30–32, and that can project clusters from one dataset 
onto another33. Even between experiments conducted with the same 
platform, there can be technical differences related to the dissocia-
tion of primary tissues versus cultured cells, including higher con-
centrations of dissociation enzymes and mechanical stress resulting 
from tissue perfusion or trituration. Optimization of tissue dissocia-
tion is therefore a critical aspect of any SCG experiment, and the 
discovery34 and correction of dissociation-induced artifacts should 
be explored during data analysis. It can also be unclear how the 
temporal dynamics of engineered and reference cells correspond. 
Alignment of differentiation trajectories can make these compari-
sons possible35,36 (Fig. 1c). Finally, an optimal reference atlas would 
ideally come from the same individual as the engineered cells, but 
this is impractical in most scenarios. The extent to which inter-indi-
vidual variation is captured in SCG data and how well this varia-
tion is modeled in engineered systems are still being explored. In 
general, statistical tools that assess reproducibility, correct technical 
noise, and quantify similarity will improve the ability to assess accu-
racy and precision from SCG measurements37–40.

The precision, efficiency, and accuracy of engineering
The directed differentiation of PSCs to defined cell types in two 
dimensions, or the reprogramming of one somatic cell type into 
another, is often inefficient (Fig. 2a). For example, expression of 
the single transcription factor Ascl1 results in only ~10% of input 
mouse fibroblasts becoming induced neuronal cells. Previous efforts 
to characterize engineered cells have generally focused on the use of 
markers to determine whether the target cell has been generated. In 
contrast, minimal attention has been paid to ‘off-target’ cell types 
because it is difficult to predict the appropriate off-target markers. 
As an alternative, scRNA-seq can provide an unbiased sample of 
cellular heterogeneity at different time points during reprogram-
ming. For induced neuronal cells derived from mouse embryonic 
fibroblasts, scRNA-seq analysis showed that a myocyte fate emerged 
during reprogramming and was more abundant than the target 
neuronal cell fate, though both cell lineages expressed the Tau–
Egfp selection marker41. When Ascl1 was combined with additional 
neuron-specific factors, most of the Tau–Egfp+ cells acquired a neu-
ronal fate. Similarly, undesired cell types were detected by scRNA-
seq after differentiation of induced pluripotent stem cell (iPSCs) to 
cardiomyocytes42.

These observations indicate that one major reason for repro-
gramming inefficiency is the lack of precision of the protocol, which 
provides opportunities to logically engineer the differentiation 
process. For example, Loh et al. mapped the cell fates that emerge 
during mesoderm development from pluripotency, and identified 
extrinsic signals that correlate with bifurcating lineage choices43. In 
this way, they were able to block unwanted lineages and steer the 
differentiation path toward specific bone and heart progenitors with 
greater efficiency. Insights from single-cell transcriptomics thus 
provide strategies to monitor cell fates and to increase efficiency and 
precision during directed differentiation, by enhancing target fates 
or suppressing off-target fates44,45 (Fig. 2b).

The targeted fates that emerge from cell or tissue engineering 
might not exactly represent the cells found in primary human tis-
sue. scRNA-seq can be used to quantify the accuracy of each differ-
entiated cell type. As an example, La Manno et al. profiled in vitro 
human-stem-cell-derived dopaminergic neurons, which clustered 
into 14 molecularly distinct populations, and used machine learn-
ing to quantify their similarity to in vivo dopaminergic neuron 
‘prototypes’ in a human fetal midbrain atlas46. The authors found 

substantial similarity between the in vitro and in vivo cells, espe-
cially in key developmental drivers, but also noted differences in 
global expression patterns.

Cells in a dish may also take different differentiation paths than 
cells that develop in the body. Some protocols aim to recapitulate a 
native developmental sequence by applying a progressive regimen 
of inductive molecules to differentiating cells. Other directed dif-
ferentiation protocols bypass certain developmental intermediates 
to arrive at a mature cell state. To determine what path cells actually 
take, one can use scRNA-seq data to computationally reconstruct 
differentiation trajectories25,47,48. On the basis of the similarity of 
their single-cell transcriptomes, cells can be placed along a temporal 
progression, or ‘pseudotime’ axis. (Pseudotime reflects an ordering 
of transcriptome states along a process, rather than the actual timing 
of each step.) Because cells in a sampled population undergo differ-
entiation at different rates, pseudotime trajectories can be inferred 
from a single snapshot, or the approach can be extended to multiple 
sampling time points in a differentiation experiment. Using this 
approach, Briggs et al. recently showed that both TF overexpression 
and growth factor regimens can generate very similar motor neuron 
states, despite the fact that cells progress along different differen-
tiation paths in the two conditions49. It will be interesting for the 
field to pursue the question of whether such different routes lead to 
important differences in gene expression or epigenetic memories, 
or have implications for the use of the engineered cells in disease 
modeling and therapeutics.

2D cultures lack some of the cell–cell communication that 
is important for developmental and homeostatic processes, and 
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Fig. 1 | A human cell atlas is an optimal reference for cell and tissue 
engineering. a, SCG methods are being used to make comprehensive 
atlases of the cell-type diversity of human organ systems. In parallel, SCG 
approaches can be applied to dissect heterogeneity that arises during 
cell and tissue engineering. b,c, Primary and engineered cells can then be 
compared (b) in terms of cell composition and transcriptome similarities or 
(c) across differentiation pathways and over time.
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self-organizing 3D tissues have emerged as powerful models that 
recover more complex interactions50. Organoids contain cell types, 
morphologies, and functions that resemble those in the correspond-
ing primary tissue, but the accuracy of this recapitulation has been 
difficult to quantify. Most studies compare organoids with primary 
tissue by means of bulk transcriptomics13,15,51, which lacks cell-type 
resolution. Using scRNA-seq, we recently uncovered a remarkable 
correspondence between the differentiation programs of human 
organoids and their in vivo fetal counterparts52,53. Of the genes that 
varied between progenitors and neurons in the fetal cortex, more 
than 85% were significantly correlated (Pearson’s r >​ 0.4) with the 
corresponding differentiation trajectory in cerebral organoids. For 
liver organoids, hepatocyte-like transcriptome states in the organ-
oid had a maximum of 85% similarity to fetal hepatocytes, com-
pared with a maximum of 60% in 2D liver monocultures, which we 
linked to interlineage signaling in the liver organoid53. The analy-
ses also identified differences in gene expression between fetal and 
organoid cells that were related to media components or the absence 
of particular cell lineages in the organoids.

Detection of these differences can guide strategies to improve 
the organoid culture protocol, as discussed below (reverse engineer-
ing). Many differences can arise between organoids and tissues at 
different developmental states. Higher-throughput SCG methods 
are enabling more sampling of human organoids over time54. For 
example, Quadrato et al.54 measured the transcriptome of 82,291 
individual cells from 31 brain organoids at two time points (3 and 
6 months after the start of in vitro organoid development), which 
allowed them to identify diverse cell populations from different 
brain regions over time and report substantial batch-to-batch varia-
tion in organoid cell composition. New methods that decrease the 
cost of sequencing per cell, coupled with strategies to multiplex 
samples55, will help scientists measure cells over different time 
courses and in multiple environmental conditions. This will help 
disentangle the influence of cell-intrinsic versus environmental 
effects on the accuracy of the engineered cells, and allow for an 
enhanced understanding of the capacity of these exciting models to 
recapitulate human physiology.

Reverse engineering of specific cell types
Reverse engineering is the process of disassembling an object to 
understand how it works in order to recreate or improve it. SCG 
allows new strategies for the reverse engineering of tissues by 
enabling researchers to catalog component parts and predict how to 
recreate them. A major goal is to predict combinations of TFs that 
can generate specific cell types and subtypes. Historically, educated 
guesses based on expression in bulk samples have helped research-
ers prioritize TFs for small-scale combinatorial screens. The four 
‘Yamanaka factors’ that reprogram somatic cells into PSCs were 
identified through functional testing of 24 candidates, chosen in 
part on the basis of their enriched expression in embryonic stem 
cells56. Similar strategies were used to identify factors to generate 
neurons from fibroblasts57. scRNA-seq can now improve such pre-
dictions by increasing the resolution of cell states; it can be used to 
identify the TFs expressed in specific cell subtypes and at branching 
points along a differentiation path. Computational frameworks58 
can predict TF combinations to differentiate input cells to a target 
cell subtype.

Pooled screens can be more efficient than arrayed screens for 
testing TF combinations. In the context of pooled cDNA overex-
pression libraries59, scRNA-seq can be used to identify the particu-
lar overexpressed TFs that lead to emergent cell fates, which can 
be assessed by comparison to a reference cell-type atlas (Fig. 3a). 
A similar approach can be applied to identify and test signaling 
molecules that induce differentiation or maturation. This strategy 
was recently used to differentiate myoblasts to myocytes; scRNA-
seq analysis predicted that modulation of insulin and BMP (bone 

morphogenetic protein) signaling pathways could enhance the 
MYOD-mediated reprogramming of fibroblasts to myocytes. The 
addition of these signaling molecules improved the reprogramming 
efficiency fivefold36.

Spatiotemporal triggers for lineage specification are commonly 
provided by an organized niche microenvironment60,61. The descrip-
tion of niches by scRNA-seq can identify signals for maintaining an 
organ-specific stem cell population or differentiating cells toward 
a mature cell type62. These signaling inputs often have defined spa-
tial locations in a complex tissue. Most widely used scRNA-seq 
protocols disrupt the spatial integrity of the tissue; however, these 
approaches can be combined with emerging spatial transcriptomic 
methods (recently reviewed in refs. 63,64), such as sequential single-
molecule fluorescence in situ hybridization65, to resolve the likely 
locations of cell states. Recently, Medaglia et al. developed the 

Failed

Failed

Target
cell type

Off-target Off-target

Promote (e.g., with
additional TFs) 

Promote maturation 
(e.g., with small molecules)

Accuracy: fraction of 
transcriptome matching 
reference cell type

Precision: the reproducibility 
of cell differentiation to
the same cell state

Efficiency: proportion of 
accurately differentiated 
cells matching the target

a

Reconstruct differentiation
trajectory

Target cell type

Failed

Failed

Off-target

Off-target

Enhance differentiation:
target TFs and signaling pathways 

that segregate at each branch

Inhibit (e.g., with small
molecules)

Induce differentiation
with TF

Inhibit

Not accurate and
not precise

Accurate but
not precise

Precise but 
not accurate

Accurate and
precise

Fate space

Primary cells

b

Engineered cells

Cell

Fig. 2 | Single-cell genomics can be used to assess and enhance accuracy, 
precision, and efficiency during directed differentiation. a, Single-cell 
transcriptomics can be used to reconstruct differentiation paths and 
illuminate failed differentiation events or off-target cell fates that can 
emerge alongside the target cell type during directed differentiation. 
The final mixture of cells in a differentiation experiment (represented as 
endpoints in the reconstructed pseudotemporal trajectory (top)) can be 
compared to a reference atlas, and the accuracy, precision, and efficiency of 
the engineering process can be quantified. The images at the bottom depict 
the fate space imagined as a dartboard; an accurate, precise, and efficient 
engineering protocol will generate cells tightly clustered around the target 
fate in the center. b, Single-cell transcriptome data can be used to identify 
the transcription factors and signaling pathways that segregate at each 
branch, and this information can be used to improve differentiation to the 
target cell type.

Nature Methods | VOL 15 | SEPTEMBER 2018 | 661–667 | www.nature.com/naturemethods 663

http://www.nature.com/naturemethods


Review Article NaTure MeTHoDS

NICHE-seq method, which combines photoactivatable fluorescent 
reporters, microscopy, and scRNA-seq to determine the cellular 
and molecular composition of immune niches, and can in principle 
be applied to other niches66. The advantage of this protocol is that 
it measures the entire transcriptome, rather than a set of a priori–
determined RNA targets.

In addition to stem cell niches, the functional organization 
of a tissue is inherently under spatial regulation. Even seemingly 
homogeneous cell populations, such as hepatocytes and entero-
cytes, exhibit dramatic differences in gene expression depending on 
their location within the tissue’s repeating anatomical units (liver 
lobules67 and intestinal villi68, respectively). These cells experience 
concentration gradients of oxygen, nutrients, morphogens, bacteria, 
and other factors. The cells themselves play a role in shaping the gra-
dients, thereby creating a complex system that is difficult to emulate 
in vitro. Substantial effort is being invested in reconstructing graded 
microenvironments in various microfluidic or matrix scaffolds, as 
the microenvironments seem to be critical for the generation of 
physiological functions69,70. scRNA-seq can guide the structural 
design of culture units in microfluidic devices or other scaffolds by 
making it possible to assess spatially dependent cell states. As spatial 
transcriptomics methods advance and spread63,64,71, it will become 
feasible to explore intercellular interactions during organoid mor-
phogenesis and to learn about potential deficiencies of organoid tis-
sue patterning, niche development, and cellular maturation due to 
missing or misplaced microenvironmental signals (Fig. 3b).

Perturbation, lineage tracing, and epigenomic methods
Single-cell transcriptome measurements are used to dissect cell 
differentiation trajectories and correlate them with natural devel-
opment. However, these measurements are descriptive and might 
only provide hypotheses about underlying mechanisms. In contrast, 
new methods that couple CRISPR–Cas9 screening with scRNA-seq 
readouts can systematically assess the effect of genetic perturbations 
on gene expression at high throughput. Similar to a pooled screen, 
large numbers of perturbations can be tested at once; however, each 
cell acts as an independent experiment because it includes only one 
or a few perturbations, and the readout is the full transcriptome 
rather than a single selected phenotype. This strategy has been used 
to investigate regulatory circuits that control myeloid cell differenti-
ation72, unfolded protein response73, and T cell receptor activation74.

CRISPR–Cas9 knockout screens will also help elucidate the 
genes that are necessary for the emergence of specific subtypes and 
identify the roadblocks that lead to inefficient differentiation and 
alternative fates (Fig. 3c). At this point, single-cell perturbation 
methods have been applied only to relatively homogeneous cell 
populations. The transition to heterogeneous tissue cultures will 
require screening of fewer genes or an increase in the throughput of 
current scRNA-seq methods in order for each perturbation in each 

cell state to be sufficiently sampled. Alternatively, an increase in cell 
throughput might be achieved through sequencing of a targeted set 
of informative transcripts instead of the full transcriptome. Besides 
loss-of-function screens, a catalytically inactive version of Cas9 can 
be combined with transcriptional effectors that either activate or 
repress transcription of endogenous genes75. This approach can be 
used to identify noncoding regulatory regions that control differ-
entiation toward target cell types76. There is immense potential for 
scRNA-seq-coupled genetic screens to elucidate mechanisms con-
trolling cell differentiation, barriers to plasticity, and the organiza-
tion of cells in 3D environments.

Other methods in the single-cell toolbox can help stem cell 
biologists tackle cell behavior over time. Using scRNA-seq data, 
computational approaches can order cells in pseudotime and reveal 
potential lineage bifurcations25,47,48,77, map cell states across time 
scales78, and predict the directionality of lineage progression on 
the basis of the relative abundance of spliced and unspliced tran-
scripts79. However, these methods are based on indirect inference. 
Complementary methods have been developed for highly mul-
tiplexed fate mapping and lineage tracing directly in single cells. 
Two promising classes of these methods either introduce barcoded 
mRNAs through viral or transposon libraries80,81 or use Cas9-
mediated DNA mutations (‘scars’)82,83. The latter approach using 
inducible Cas9 systems offers the advantage of creating evolvable 
barcodes for tracing lineage trees rather than mapping cell fates 
(Fig. 3d). Further, exciting new methods that allow in situ read-
out of CRISPR-introduced DNA modifications can allow lineage 
relationships to be discerned while preserving the cells’ spatial 
relationships84. Together these studies demonstrate the tremendous 
opportunities for the use of lineage-coupled single-cell transcrip-
tomic methods to analyze lineage decisions in human organoids 
and differentiation events during cell reprogramming.

The majority of SCG studies on engineered cells thus far have 
focused on the transcriptome, but it also will be important to 
characterize engineered cells at the level of chromatin organiza-
tion and epigenetic marks. Toward this end, methods have been 
developed to profile accessible chromatin, chromatin looping, and 
DNA methylation at single-cell resolution85. These methods can be 
used to generate cell atlases, similar to what has been accomplished 
with transcriptomics, as well as to study cell reprogramming. One 
outstanding question is whether similar cell types or states that 
arise from two distinct differentiation routes (for example, direct 
reprogramming versus differentiation through all developmental 
intermediates49) coalesce transcriptionally, with equivalent DNA-
methylation patterns and chromatin organization. This will be 
particularly interesting for heritable epigenetic marks (e.g., DNA 
methylation), as disturbances in epigenome maintenance underlie 
age-related disease85. Notably, it was recently suggested that direct 
differentiation of fibroblasts to neurons preserves aging phenotypes 
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that are erased during reprogramming first to pluripotency and 
then to neurons86. Integration of perturbation, lineage tracing, and 
epigenomic measures in single engineered cells will connect the 
genome with its function and improve computational models of cell 
fates in health and disease.

Implications for disease modeling and therapies
iPSCs were anticipated to herald an era of personalized medicine 
by providing patient-specific cell types for disease modeling, drug 
screening, gene therapy, and transplantation87. For disease model-
ing, specific mutations can also now be introduced into iPSCs via 
CRISPR–Cas9 genome editing, and the iPSCs can then be differ-
entiated into the target cell or tissue type. The high expectations 
for the field are starting to be met by the development of numerous 
stem-cell-based cellular disease models and potential therapeutic 
approaches88, and 3D organoids are being used to model neuro-
developmental disorders, autism, cystic fibrosis, and metabolic 
disorders89. A mutation (or infection) can have distinct effects on 
different cells in a heterogeneous 2D cell culture or complex 3D 
organoid, and disease phenotypes can manifest through effects on 
a small cell subpopulation. Single-cell transcriptomics provides an 
unbiased way to search for disease-associated phenotypes in all sub-
populations90. In addition, integration of genome-wide-association 
data with scRNA-seq could identify the likely cell type(s) affected by 
disease-associated genetic variants91,92. These are still the very early 
days of integration between SCG and in vitro disease modeling, but 
the field is developing rapidly.

One major bottleneck in disease modeling and drug screening 
is the need to culture and prepare sequencing libraries from mul-
tiple patients and replicates. However, cell populations from differ-
ent individuals can actually be cultured and sequenced together and 
then be demultiplexed in silico on the basis of RNA sequences that 
are unique to individuals93. This scRNA-seq approach, combined 
with sample multiplexing55, might minimize the variation in culture 
conditions across healthy and disease cell lines (or drug treatment 
versus control conditions), and it can also be used to understand 
cell-autonomous and non-cell-autonomous effects of disease phe-
notypes. Ongoing efforts to establish resources for many patient-
derived iPSC lines (e.g., HipSci, HSCI iPS Core,WiCell, NYSCF) 
will greatly facilitate this undertaking.

There are many cell-transplantation therapies now in clinical 
trials—for example, the use of iPSC-derived dopaminergic cells to 
treat Parkinson’s disease8, autologous retinal cells to treat age-related 
macular degeneration10, and immunotherapy to treat cancer94,95—in 
which SCG could have a direct impact. scRNA-seq can be applied 
to assess the heterogeneity, purity, and potential safety of each batch 
of these therapeutics. Initial analyses of heterogeneity within and 
between batches of engineered cells by scRNA-seq could be used 
to identify quality control biomarkers and inform lower-cost meth-
ods (e.g., immunohistochemistry) to survey potential off-targets. 
Furthermore, failures in cell therapy clinical trials can lead to tragic 
outcomes96, and SCG methods could be used to monitor heteroge-
neity and understand what goes right and wrong during future trials 
of promising cell-transplantation therapies.

Single-cell DNA and RNA sequencing have already been used to 
explore the clonal heterogeneity and evolution of cancer tissue97,98. 
Advances in cancer organoid culture will allow the study of tumor 
heterogeneity in vitro with these technologies, thereby facilitating 
a move past the ‘one size fits all’ treatment approach. One question 
is which cell types within a complex tumor should be targeted to 
achieve maximally favorable treatment outcomes. The cancer stem 
cell (CSC) concept—the idea that some tumor cells can be hier-
archically organized, similar to somatic stem cells—sparked great 
excitement in the field of cancer biology99. The promise of the CSC 
concept was to eradicate the ‘beating heart’ of a tumor by targeting 
the tumor at its source100. Extensive research efforts in recent years 

have demonstrated, however, that cancer cells are plastic and even 
non-CSCs can acquire CSC properties101,102. SCG methods have the 
potential to unravel how cancer cells traverse cell states during pro-
cesses such as cancer cell dissemination, epithelial-to-mesenchymal 
transition, and acquisition of drug resistance, and patient-specific 
tumor organoids will allow the customized study and targeting of 
tumor cells103,104.

Outlook
The fields of SCG and tissue engineering are in a phase of rapid 
growth. We expect that the coming years will bring integrated 
technologies that combine high-throughput, lineage-coupled, and 
spatially resolved single-cell multi-omic measurements. These 
new methods will help scientists generate more accurate, pre-
cise, and efficient cultures of engineered cells that can be used for 
transplantation. If applied to patient-derived organoid models of 
disease and cancer, this merger will offer exciting opportunities 
to generate organ-level computational models of healthy human 
development, determine what goes wrong in disease, and predict 
treatment outcomes.
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