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Abstract	and	Keywords

The	field	of	evolutionary	ecology	has	long	been	interested	in	the	design	and	diversity	of
social	learning	heuristics,	simple	strategies	that	animals	use	to	extract	useful	information
from	their	social	environment.	This	chapter	reviews	a	slice	of	this	literature,	as	well	as
explicitly	analyze	the	evolution	of	social	learning	heuristics.	The	chapter	outlines	a	family	of
social	learning	heuristics	and	analyze	their	evolutionary	performance	under	two	broadly
different	kinds	of	environmental	variation.	As	each	social	learning	heuristic	also	shapes	a
social	environment	as	individuals	use	it,	the	chapter	considers	the	population	feedbacks
of	each	heuristic	as	well.	The	analyses	in	this	chapter	are	both	ecological	and	game
theoretic.	This	chapter's	analyses	are	also	explicitly	evolutionary—heuristics	succeed	or
fail	depending	upon	long-term	survival	and	reproduction	in	a	population,	not	atomistic
one-shot	payoffs.	As	a	result,	some	of	the	conclusions	reflect	an	evolutionary	rationality.
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For	example,	heuristics	that	randomize	their	behavior	can	succeed	where	those	that	are
consistent	fail.	Overall,	however,	the	approach	the	chapter	reviews	here	supports	the
general	conclusion	that	social	learning	heuristics	are	likely	to	be	multiple	and	subtly
adapted	to	different	physical,	statistical,	and	social	environments.

Keywords:			social	learning,	game	theory,	evolutionary	ecology,	environmental	variation,	temporal	variation,
bet	hedging,	conformist	transmission

A	common	premise	in	magic	is	that	words	themselves	have	power.	Speaking	the	right
words	in	the	right	context	is	believed	to	create	fantastic	effects.	Everything	from	Old
Norse	runes	to	magic	in	the	Harry	Potter	books	requires	activation	with	words.	This	kind
of	belief	is	a	feature,	not	only	of	Western	myth	and	magic,	but	also	of	African	(famously,	of
Azande	oracles;	Evans-Pritchard,	1937)	and	Asian	(Daoist)	traditions.	Some	healers	in	the
Muslim	world	write	in	ink	verses	from	the	Koran,	and	then	they	wash	the	ink	into	a	potion
to	be	consumed.	In	Swahili,	one	can	use	the	same	word,	dawa,	to	refer	to	both	magical
spells	and	the	influence	that	a	charismatic	speaker	has	over	a	crowd.

Why	do	so	many	peoples	believe	that	words	themselves	are	magical?	These	beliefs	are
not	necessarily	irrational.	Every	one	of	us,	by	speaking,	can	alter	the	minds	of	those
within	earshot.	With	the	word	snake,	one	can	conjure	a	potentially	terrifying	image	in	the
minds	of	others.	Effects	like	these	reveal	how	hard	it	is	to	really	control	our	thoughts,	as
well	as	the	power	that	mere	utterances	have	over	us.	Of	course,	people	are	savvy	and
do	not	robotically	obey	all	suggestions	or	commands.	However,	spoken	opinion	and
advice	is	highly	valued	almost	everywhere.	The	words	of	others,	carrying	information,
can	have	powerful	effects	on	our	own	behavior.	The	mere	suggestion	that	something—
like	a	measles	vaccine—is	dangerous	can	have	huge	effects	on	behavior.	People	and
governments	intuit	this	power	and	as	a	result	attempt	to	control	the	words	that	they
themselves	and	others	are	exposed	to.	Words	really	are	a	kind	of	mind	control,	or	at	least
mind	influence.	Their	power	can	travel	through	the	empty	air	and	affect	the	behavior	of
masses	of	other	people	in	powerful	ways.	They	are	like	magic.

(p.382)	 The	psychology	of	humans	is	uniquely	elaborated	for	this	kind	of	“magical”
influence.	The	capacity	for	language	is	only	one	way	that	social	influence	on	behavior	is
truly	baked	into	our	nature.	Observational	learning	of	various	kinds	is	equally	powerful,
as	people	combine	theory	and	information	from	their	social	environment	to	arrive	at
inferences	about	the	reasons	for	and	consequences	of	behavior.	And	animals	other	than
humans	also	use	social	information	(e.g.,	Bonner,	1980;	Galef,	1992,	1996;	Giraldeau	&
Caraco,	2000;	Fragaszy	&	Perry,	2003;	Laland	&	Galef,	2009;	Price,	Lambeth,	Schapiro,
&	Whiten,	2009).	Although	the	psychological	mechanisms	and	diversity	of	social	learning
among,	for	example,	baboons	is	not	the	same	as	that	among	humans,	the	savvy	monkey
also	uses	information	from	its	social	environment.	As	a	result,	the	field	of	evolutionary
ecology	has	long	been	interested	in	the	design	and	diversity	of	social	learning	heuristics,
simple	strategies	that	animals	use	to	extract	useful	information	from	their	social
environments.

In	this	chapter,	we	will	review	a	slice	of	this	literature,	as	well	as	explicitly	analyze	the
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evolution	of	social	learning	heuristics.	A	social	learning	heuristic	is,	for	instance,	to	learn
from	the	most	successful	individual	in	the	surroundings	(payoff-biased	learning;	see
Table	14-1),	or	to	pick	up	the	behavior	that	appears	to	be	most	common	in	one's
environment	(consensus	learning).	The	social	learning	heuristics	discussed	in	this	chapter
are	constructed	with	this	evolutionary	analysis	in	mind,	but	do	contain	assumptions	about
how	information	is	searched	for,	when	search	stops,	and	how	this	information	is	combined
into	a	decision	(Gigerenzer,	Todd,	&	the	ABC	Research	Group,	1999).	For	instance,
consensus	learning	is	modeled	by	assuming	that	each	individual	randomly	samples	the
behavior	of	three	individuals	surrounding	it,	and	preferentially	adopts	the	majority
behavior.

In	the	chapter,	we	outline	a	family	of	social	learning	heuristics	and	analyze	their
evolutionary	performance—their	ability	to	persist	and	replace	other	heuristics—under
two	broadly	different	kinds	of	environmental	variation.	As	each	social	learning	heuristic
also	shapes	a	social	environment	as	individuals	use	it,	we	consider	the	population
feedbacks	of	each	heuristic,	as	well.	Feedbacks	occur	when	the	behavior	generated	by	a
heuristic	in	turn	changes	the	success	rate	of	this	heuristic	(and	that	of	others),	a
phenomenon	sometimes	called	frequency-dependence.	The	analyses	in	this	chapter	are
ecological—the	performance	of	each	heuristic	is	always	in	the	context	of	a	specific	set	of
assumptions	about	the	population	structure	and	environment.	They	are	also	game-
theoretic—social	learning	heuristics	use	but	also	modify	the	social	environment,	inducing
strong	frequency-dependence.	Our	analyses	are	also	explicitly	evolutionary—heuristics
succeed	or	fail	depending	upon	their	long-term	survival	and	reproduction	in	a	population,
not	atomistic	one-shot	(p.383)

Table	14-1:	Major	Social	Learning	Heuristics	from	the	Literature,	with
Other	Names	for	the	Same	Strategies,	and	Citations	for	a	Sample	of
Previous	Evolutionary	Analysis
Heuristic Other	names Citations
Unbiased
social
learning

Linear	social	learning,
random	copying,	imitation

Aoki,	Wakano,	&	Feldman	(2005);	Boyd	&
Richerson	(1985,	1995);	Cavalli-Sforza	&
Feldman	(1981);	Mesoudi	&	Lycett	(2009);
Rogers	(1988);	Wakano,	Aoki,	&	Feldman
(2004)

Consensus
learning

Conformity,	conformist
transmission,	positive
frequency	dependent
imitation,	majority	rule
imitation

Boyd	&	Richerson	(1985);	Henrich	&	Boyd
(1998,	2001);	Lehmann	&	Feldman	(2008);
Mesoudi	&	Lycett	(2009);	Wakano	&	Aoki
(2007)

Payoff	bias Success	bias,	indirect
bias

Boyd	&	Richerson	(1985);	Henrich	(2001);
Schlag	(1998,	1999)

Prestige
bias

Indirect	bias Boyd	&	Richerson	(1985);	Henrich	&	Gil-
White	(2001)

Kin	bias Vertical	transmission,
parent–child	transmission

McElreath	&	Strimling	(2008

payoffs.	As	a	result,	some	of	our	conclusions	reflect	an	evolutionary	rationality	that	is
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sometimes	counterintuitive.	For	example,	heuristics	that	randomize	their	behavior	can
succeed	where	those	that	are	consistent	fail.	Overall,	however,	the	approach	that	we
review	here	supports	the	general	conclusion	that	social	learning	heuristics	are	likely	to	be
multiple	and	subtly	adapted	to	different	physical,	statistical,	and	social	environments.

Social	Learning	Heuristics
In	parallel	to	the	literature	on	bounded	rationality	(Simon,	1955b),	evolutionary	ecologists
and	anthropologists	studying	social	learning	have	proposed	that	there	exists	a	toolbox	of
contextually	deployed	heuristics,	similar	to	the	adaptive	toolbox,	that	are	suited	to
different	ecological	and	social	environments	(reviews	in	Henrich	&	McElreath,	2003;
Richerson	&	Boyd,	2005b).	The	basic	premise	is	that	information	about	the	world	is	costly
to	acquire	and	process	(Boyd	&	Richerson,	1985).	So,	as	a	method	of	reducing
information	requirements	and	processing	costs,	natural	selection	favors	strategies	that
leverage	the	specific	correlations	of	specific	environments	in	order	to	make	locally
adaptive	choices.	Each	heuristic	in	the	toolbox	is	best	deployed	in	a	different
circumstance,	and	some	heuristics	are	more	domain-general	(p.384)	 than	others.	Thus
the	expectation	is	that	there	are	many	inferential	strategies	that	individuals	can	use	to
choose	behavior.	Although	some	of	these	strategies	are	more	cognitively	demanding	and
information-hungry	than	others,	all	are	quite	“bounded,”	compared	to	Bayesian
justifications	for	social	learning	(Bikhchandani,	Hirshleifer,	&	Welch,	1992;	Boyd	&
Richerson,	2001,	2005b).	Like	other	hypothesized	heuristics,	these	social	learning
heuristics	can	be	compared	to	laboratory	behavior.	In	recent	years,	there	has	been	a
small	industry	of	testing	these	models	against	dynamic	learning	data	(Efferson,	Lalive,
Richerson,	McElreath,	&	Lubell,	2008;	McElreath	et	al.,	2005,	2008;	Mesoudi,	2008;
Mesoudi	&	O'Brien,	2008;	Mesoudi	&	Whiten,	2008).

In	this	section,	we	will	outline	and	begin	to	analyze	a	toolbox	of	social	learning	heuristics
that	evolutionary	ecologists	and	evolutionary	anthropologists	have	studied,	using	both
empirical	and	analytical	methods.	The	collection	of	heuristics	that	we	review	is	not
complete.	Many	other	heuristics	could	be	nominated,	and	each	heuristic	we	do	nominate
is	in	reality	a	family	of	heuristics.	By	constraining	our	discussion	to	the	most	commonly
discussed	strategies,	however,	we	have	space	to	derive	each	from	first	(or	at	least	basic)
principles	and,	later,	analyze	the	performance	of	several	in	different	ecological
circumstances.

Theory	leads	us	to	expect	that	people	(and	perhaps	other	animals)	possess	a	toolbox	of
social	learning	heuristics.	Our	goal	is	to	study	the	conditions,	in	terms	of	both	physical
and	social	environments,	that	favor	different	heuristics.	In	Table	14-1,	we	list	several
social	learning	heuristics	from	the	literature,	also	listing	aliases	and	a	sample	of	relevant
citations	to	previous	work.	In	the	remainder	of	this	chapter,	we	will	demonstrate	the
analysis	of	a	few	of	these.	We	will	also	present	a	new	analysis	of	the	evolution	of	heuristics
in	time-varying	environments.	The	dynamical	systems	approach	common	in	evolutionary
analysis	may	be	unfamiliar	to	many	readers,	so	we	provide	a	quick	guide	in	Box	14-1	to
some	major	concepts.

The	Environmental	Challenge
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The	Environmental	Challenge

In	order	to	make	progress	in	defining	and	analyzing	the	performance	of	different	social
learning	heuristics,	we	have	to	define	the	challenge	that	the	organism	faces.	Here,	we	use
an	evolutionary	framing	of	the	common	multi-armed	bandit	problem.

Assume	that	each	individual	at	some	point	in	its	life	has	to	choose	between	a	very	large
number	of	distinct	behavioral	options.	These	options	could	be	timing	of	reproduction,
patterns	of	paternal	care,	or	any	other	set	of	mutually	exclusive	options.	Only	one	of
these	options	is	optimal,	producing	a	higher	fitness	benefit	than	all	the	others.	We	will
assume	that	a	single	optimal	behavior	increases	an	individual's	fitness	by	a	factor	1	+	b	〉
1.	All	other	behavior	leaves	(p.386)	 fitness	unchanged.	In	particular,	let	w	0	be	an
individual's	fitness	before	behaving.	Because	there	are	a	great	many	alternative	choices,
randomly	guessing	will	not	yield	a	fitness	payoff	much	greater	than	w	0.	Then	those	who
choose	optimally	have	fitness	w	0(1	+	b),	whereas	those	who	do	not,	have	fitness	w	0.
Because	fitness	does	not	depend	upon	how	many	other	individuals	also	choose	the	same
option,	these	payoffs	are	not	directly	frequency-dependent.

We	provide	here	short	definitions	of	some	of	the	key	evolutionary	ecology	concepts
in	the	chapter.	A	complete	introduction	can	be	found	in	McElreath	and	Boyd	(2007).

Population:	All	organisms	of	the	same	species	that	are	linked	by	gene-flow,	the
possible	exchange	of	genes	across	generations.	Populations	can	be	subdivided	into
smaller	groups,	in	which	case	not	all	individuals	will	be	able	to	interbreed	in	a	given
generation.	Nevertheless,	as	long	as	subpopulations	are	linked	by	migration	across
generations,	all	individuals	in	the	total	population	can	in	principle	be	linked	by	gene-
flow.	The	population	is	the	natural	unit	of	evolution,	as	the	frequencies	of	genes	and
behavior	change	over	time	among	the	individuals	within	it.

Life	cycle:	The	sequence	of	events	that	happen	between	birth	and	death.	These
events,	aggregated	over	many	individuals	in	a	population,	induce	selection	on	specific
genetic	or	cultural	variants.

Strategies:	Heritable	aspects	of	contingent	behavior.	Heuristics	are	strategies.
Behavior	is	distinct	from	strategy,	as	the	same	strategy	can	produce	different
behavior	in	different	contexts.	In	evolutionary	models,	strategies	are	what	evolve,
and	the	frequencies	of	different	strategies,	or	the	alleles	(DNA-sequences)	that	code
for	them,	describe	the	state	of	the	population.

Fitness:	Typically,	the	expected	number	of	copies	of	a	specific	strategy	per	individual
in	the	next	generation.	Fitness	depends	on	survival	and	reproduction.	Fitness
concepts	do,	however,	vary	among	models	of	evolutionary	processes,	because	the
goal	is	to	define	a	quantity	that	will	allow	us	to	predict	the	population	dynamics.
Evolutionary	ecologists	attempt	to	understand	what	will	evolve,	and	fitness	is	a	tool	in

(p.385)	 Box	14-1:	Readers’	Guide	to	Theoretical	Evolutionary	Ecology
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such	an	analysis.

Dynamics:	Time	evolution	in	a	physical	system.	In	evolutionary	models,	the	dynamics
are	the	time	trends	of	the	frequencies	of	different	heritable	strategies	and	behaviors.
The	frequencies	at	any	time	in	the	future	depend	upon	the	frequencies	in	the	past.
Evolutionary	analysis	is	a	branch	of	dynamical	systems	theory.

Equilibrium:	A	combination	of	strategies	at	the	population	level	at	which	the
dynamics	of	the	population	result	in	no	change.	Equilibria	can	be	stable	or	unstable.
The	dynamics	of	a	population	return	the	population	to	a	stable	equilibrium,	when	the
frequencies	are	changed	slightly.	In	contrast,	the	dynamics	lead	the	population	away
from	an	unstable	equilibrium,	when	the	frequencies	are	changed	slightly.	Stable
equilibria	are	candidate	end	states	of	the	evolutionary	process.

Invasion:	When	a	rare	strategy	can	increase	in	numbers	in	a	population,	it	can
invade	that	population.	A	strategy	that,	once	common,	can	repel	rare	invaders	of	all
other	strategies	is	an	evolutionary	stable	strategy.

Geometric	mean	fitness:	If	we	define	“fitness”	as	“the	product	of	survival
probability	and	mean	reproduction	rate,”	then	geometric	mean	fitness	is	the
geometric	mean	of	different	probable	fitness	values.	Natural	selection	in	many	models
maximizes	geometric	mean	fitness,	rather	than	average	fitness,	because	natural
selection	is	affected	by	both	the	mean	and	variance	in	fitness	across	generations.

Individual	Updating

The	foil	for	all	the	social	learning	heuristics	that	we	consider	here	is	a	gloss	individual
updating	heuristic.	However	the	mechanism	works	in	detail,	we	assume	that	individuals
have	the	option	of	relying	exclusively	on	their	own	experience	when	deciding	how	to
behave.	We	assume	that	individual	updating	requires	sampling	and	processing	effort,	as
well	as	potential	trial-and-error.	As	a	result,	an	organism	that	uses	individual	updating	to
learn	optimal	behavior	pays	a	fitness	cost	by	having	its	survival	multiplied	by	c∈[0,	1].
This	means	that	the	fitness	of	an	individual	updater	is	always	w	0(1	+	b)c	〉	w	0.	We
assume	that	individual	updating	is	always	successful	at	identifying	optimal	behavior.	We
have	analyzed	the	same	set	of	heuristics,	assuming	that	individual	updating	is	successful
only	a	fraction,	s,	of	the	time.	This	assumption,	although	biologically	satisfying,	adds	little	in
terms	of	understanding.	It	changes	none	of	the	qualitative	results	that	we	will	describe	in
later	sections,	while	adding	mathematical	complexity.

“Unbiased”	Social	Learning

Probably	the	simplest	kind	of	social	learning	is	a	strategy	that	randomly	selects	a	single
target	(an	individual	to	learn	from).	Much	of	the	earliest	evolutionary	work	on	social
learning	has	considered	this	strategy	(Boyd	&	Richerson,	1985;	Cavalli-Sforza	&
Feldman,	1981),	and	even	more	recent	work	continues	to	study	its	properties	(Aoki,
Wakano,	&	Feldman,	2005;	Wakano,	Aoki,	&	Feldman,	2004).
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To	formalize	this	heuristic,	consider	a	strategy	that,	instead	of	trying	to	update
individually,	copies	a	random	member	of	the	previous	generation.	Such	a	strategy	avoids
the	costs	of	learning,	c.	Social	learning	may	entail	costs,	but	they	are	assumed	to	be	lower
than	those	of	individual	updating.	The	unavoidable	cost	of	social	learning	is	that	the	payoff
from	such	a	heuristic	depends	upon	the	quality	of	available	social	information.	We	will
refer	to	such	a	strategy	as	“unbiased”	social	learning	(see	Table	14-1).

We	use	the	word	“unbiased”	to	describe	this	kind	of	social	learning,	although	the	word
“bias”	is	problematic.	We	use	the	term	to	refer	only	to	deviations	from	random
processes,	not	deviations	from	(p.387)	 normative	standards.	The	word	“bias”	has	been
used	in	this	way	for	some	time	in	the	evolutionary	study	of	social	learning	(Boyd	&
Richerson,	1985,	for	example).

Let	q	(“quality”	of	social	information)	be	the	proportion	of	optimal	behavior	among
possible	targets	(the	individuals	to	learn	from)	of	social	learning.	Then	the	expected
fitness	of	an	unbiased	social	learner	is	w	0(1	+	qb),	wherein	b	is	discounted	by	the
probability	that	the	unbiased	social	learner	will	acquire	optimal	behavior.	Like	other	social
learning	heuristics,	unbiased	social	learning	actively	shapes	social	environments	itself—a
heuristic	that	uses	behavior	as	a	cue	and	produces	behavior	that	will	necessarily	create
feedbacks	in	the	population	of	learners.	As	a	result,	a	satisfactory	analysis	must	be
dynamic.	We	consider	such	an	analysis	in	a	later	section.

Note	that	we	assume	no	explicit	sampling	cost	of	social	learning.	Indeed,	several	of	the
social	learning	heuristics	that	we	consider	in	this	chapter	use	the	behavior	of	more	than
one	target,	and	we	have	not	considered	explicit	costs	of	sampling	these	targets	either.
Consensus	learning	(below),	in	our	simple	model	of	it,	uses	three	targets,	and	payoff-
biased	learning	(later	in	this	section)	uses	two	targets.	Does	this	mean	that	consensus	is
worse	than	payoff-bias,	when	both	are	equal	in	all	other	regards?	We	think	the	answer	to
this	question	will	depend	upon	details	that	we	have	not	modeled.	Do	other	activities
provide	ample	opportunity	to	sample	targets	for	social	learning,	or	must	individuals
instead	search	them	out	and	spend	time	observing	their	behavior?	If	the	behavior	in
question	is	highly	complex	and	requires	time	and	practice	to	successfully	transmit,	like
how	to	make	an	arrow,	then	consensus	learning	may	entail	higher	behavioral	costs	than,
say,	payoff-bias.	This	is	because	a	consensus	learner	needs	to	observe	the	detailed
technique	of	three	(or	more)	individuals,	whereas	the	payoff-biased	learner	need	only
observe	payoffs	and	then	invest	time	observing	one	target.	We	could	invent	stories	that
favor	consensus,	as	well.	And	although	constructing	and	formalizing	such	stories	is	likely
instructive,	it	is	a	sufficiently	detailed	project	that	we	have	not	undertaken	it	in	this
chapter.	But	we	do	not	wish	to	convey	the	message	that	sampling	costs	and	sampling
strategy—how	many	to	sample	and	when	to	stop,	for	example—are	uninteresting	or
unimportant	questions.	They	are	simply	beyond	the	scope	of	our	investigation.

Consensus	Learning

An	often-discussed	category	of	social	learning	heuristics	is	those	that	use	the
commonality	of	a	behavior	as	a	cue	(Boyd	&	Richerson,	1985;	Henrich	&	Boyd,	1998;
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Mesoudi	&	Lycett,	2009;	Wakano	&	Aoki,	2007).	When	an	individual	can	sample	more
than	two	targets,	it	is	possible	to	use	the	frequency	of	observed	behavior	among	the
targets	(p.388)	 as	a	cue	to	guide	choice.	This	kind	of	strategy	has	been	called	positive
frequency	dependence	and	conformist	transmission.	We	adopt	the	label	“consensus”
learning	here,	because	“conformity”	is	a	vague	term	that	many	people	associate	with
social	learning	of	any	kind	(as	it	is	often	used	in	psychology),	and	because	the	alternative
“positive	frequency	dependence”	is	an	unwieldy	term.

Consensus	learning	can	be	most	easily	modeled	by	assuming	that	an	individual	samples
three	targets	at	random	and	preferentially	adopts	the	most	common	behavior	among
them.	In	Box	14-2,	we	show	how	to	use	this	definition	to	derive	the	expected	probability
that	an	individual	using	consensus	learning	will	acquire	optimal	behavior:

(1)	

Boyd	and	Richerson	(1985)	have	considered	a	number	of	generalizations	of	this
heuristic,	including	different	weights	given	to	each	target,	as	well	as	correlations	among
the	behavior	of	the	targets.	We	will	ignore	these	complications	in	this	chapter,	because
our	goal	is	to	(p.389)	 motivate	a	mode	of	analysis	and	to	emphasize	the	differences
among	quite	different	social	learning	heuristics,	rather	than	among	variants	of	the	same
heuristics.

We	use	a	simple	table	to	derive	probabilities	of	acquiring	optimal	(1)	and	non-	optimal
(0)	behavior,	using	a	consensus	learning	heuristic.

Observed	behavior Pr(Obs) Pr(1) Pr(0)
111 q3 1 0
110 3q2(1-q) 2/3+D 1/3-D
100 3q(1-q)2 1/3-D 2/3+D
000 (1-q)3 0 1

0	〈	D	1/3	is	the	strength	of	the	preference	for	consensus.	The	columns	are,	in	order
from	left	to	right:	the	vector	of	observed	behavior	from	a	sample	of	three	targets,
where	1	indicates	optimal	behavior	and	0	any	non-optimal	behavior;	the	probability	of
sampling	that	vector;	the	probability	of	acquiring	optimal	behavior	under	the
heuristic,	given	that	sample;	and	the	probability	of	acquiring	non-optimal	behavior.
First,	multiply	each	probability	of	the	observed	vector	of	behavior	by	the	probability
of	acquiring	optimal	behavior,	Pr(1).	Then,	add	together	all	the	products	from	each
row.	In	this	case	

,	simplifies

Box	14-2:	Deriving	Consensus	Learning

× 1 + 3 (1 − q) × (2/3 + D) + 3q × (1/3 − D) + × 0q3 q2 (1 − q) 2 (1 − q) 3
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to	Equation	1	in	the	main	text,	assuming	for	simplicity	that	D	=	1/3.	We	are	making	the
simplifying	assumption	in	this	derivation	that	all	non-optimal	behavior	is	categorized
together.	As	long	as	most	immigrants	come	from	one	or	a	few	neighboring	patches,
this	will	not	be	a	bad	approximation.	Thus	we	consider	these	results	to	hold	for
structured	populations	with	nearest-neighbor	migration.	When	it	is	a	bad
approximation,	however,	it	is	a	conservative	estimate	that	biases	our	analysis	against
consensus	learning,	not	in	favor	of	it.

Payoff-Biased	Learning

Another	often-analyzed	category	of	social	learning	heuristic	is	payoff-biased	learning
(Boyd	&	Richerson,	1985;	Schlag,	1998,	1999;	Stahl,	2000).	By	comparing	observable
payoffs—health,	having	surviving	offspring,	or	even	more	domain-specific	measures	of
success—among	targets,	an	individual	can	use	differences	in	payoff	as	a	guide	for
learning.	This	kind	of	heuristic	generates	a	dynamic	often	called	the	replicator	dynamic	in
evolutionary	game	theory	(Gintis,	2000).	This	dynamic	is	very	similar	to	that	of	natural
selection,	and	is	often	used	as	a	boundedly	rational	assumption	in	social	evolutionary
models	(McElreath,	Boyd,	&	Richerson,	2003)	and	even	epidemiology	(Bauch,	2005).

A	simple	model	of	payoff-biased	learning	assumes	that	individuals	sample	two	targets	and
preferentially	adopt	the	behavior	of	the	target	with	the	higher	observed	payoff.	This
means	that	if	one	of	the	targets	is	observed	to	be	more	successful,	then	it	is	more	likely
that	the	individual	will	behave	as	this	target	does.	We	assume	that	there	is	a	chance,	x,
that	the	individual	can	correctly	judge	the	payoff	of	a	target	to	be	high	or	low.	Another
interpretation	is	that	x	is	the	chance	that	a	target's	observable	payoff	is	uncorrelated	with
behavior.	Using	these	assumptions,	we	show	in	Box	14-3	that	this	heuristic	leads	to	a
chance

(2)	
of	acquiring	optimal	behavior.

A	more	general	model	of	payoff-bias	allows	for	the	aspect	of	the	target	to	be	judged	as
“success”	to	itself	be	socially	transmitted.	For	instance,	the	dynamics	of	academic	writing
will	change	depending	on	whether	the	number	of	publications,	or	the	impact	factor	of
these	publications,	is	seen	as	the	best	cue	to	academic	success.	When	this	is	the	case,
unanticipated	social	processes	become	possible,	such	as	the	runaway	exaggeration	of
preferences	for	traits	that	are	judged	as	successful	(Boyd	&	Richerson,	1985).

Ecological	Variation	and	Social	Learning
Given	the	definitions	of	heuristics	in	the	previous	section,	we	now	turn	to	analyzing	the
evolutionary	dynamics	of	these	four	strategies—individual	updating,	unbiased	social
learning,	consensus	learning,	and	payoff-biased	learning—both	alone	and	in	competition.
We	will	assume	that	each	heuristic	is	a	heritable	strategy	and	study	their	population
dynamics.	We	consider	how	these	heuristics	perform	in	two	statistical	environments:	(a)	a
spatially	variable	environment,	in	which	different	behavior	is	optimal	in	different	places,
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and	(b)	a	temporally	variable	environment,	in	which	different	behavior	is	optimal	at
different	times.	A	spatially	variable	environment	could,	for	instance,	be	an	environment
where	prey	is	more	readily	available	in	certain	areas	than	in	others.	In	contrast,	we	can
think	of	a	“temporally	variable”	environment	as	farmland	where	crops	do	well	or	poorly
depending	on	seasonal	variation.	We	also	consider	the	interaction	of	these	two	kinds	of
variation	(Figure	14-1).

Again	we	use	a	table	to	derive	probabilities	of	acquiring	optimal	(1)	and	non-optimal
(0)	behavior,	this	time	using	payoff-biased	learning.

Actual	behavior Pr(actual) Observed	payoffs Pr(obs) Pr(1) Pr(0)
1	1 q2 1 0
1	0 2q(1-q) 1	0 (1-x)2 1 0

0	0 x(1-x) ½ ½
1	1 x(1-x) ½ ½
0	1 x2 0 1

0	0 (1-q)2 0

In	this	table,	q	is	the	frequency	of	optimal	behavior	among	targets,	and	x	is	the
chance	of	incorrectly	judging	the	payoff	of	a	target	(or	similarly,	1	–	x	is	the
correlation	between	behavior	and	observed	payoffs).	The	individual	using	payoff-
biased	learning	samples	two	targets	at	random	and	assesses	their	payoffs.	The
individual	copies	the	behavior	of	the	target	with	the	higher	observed	payoff,	unless
both	observed	payoffs	are	the	same,	in	which	case	one	target	is	copied	at	random.

The	reason	for	focusing	on	environmental	variation,	the	rates	at	which	the	environment
changes	spatially	and	temporally,	is	that	“learning,”	as	it	has	long	been	studied	in
evolutionary	ecology,	has	identified	ecological	variation	as	a	prime	selection	pressure
favoring	both	individual	learning	(“phenotypic	plasticity,”	as	it	is	often	called)	and	social
learning	(Boyd	&	Richerson,	1988;	Levins,	1968).	In	a	perfectly	stationary	environment,
genetic	adaptation	(canalization)	does	a	fine	job	of	adapting	the	organism,	without	any	of
the	cognitive	overhead	and	potential	for	error	that	arises	from	using	information	during
development	to	alter	behavior.	Thus	evolutionary	ecologists	still	consider	the	nature	of
environmental	variation	to	be	a	key	factor	in	the	evolution,	maintenance,	and	design	of
learning	(see	e.g.,	Dunlap	&	Stephens,	2009;	Lande,	2009).	(p.391)

(p.390)	 Box	14-3:	Deriving	Payoff-Biased	Learning
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Figure	14-1: 	Abstract	forms	of	environmental	variation.	Each	square
represents	an	overhead	view	of	environmental	variation.	With
purely	spatial	variation,	left	column,	different	locales	favor	different
optimal	behavior,	represented	by	the	shading	levels.	But	these
differences	remain	static	through	time,	moving	from	top	to	bottom.
With	purely	temporal	variation,	middle	column,	all	locales	favor	the
same	behavior,	but	the	optimal	behavior	varies	through	time.	With
both	spatial	and	temporal	variation,	on	the	right,	locales	may	be
different	both	from	other	locales	and	from	themselves,	through
time.

Our	goal	in	this	section	is	to	describe	some	conditions	under	which	each	social	learning
heuristic	is	well	adapted.	No	single	heuristic	can	succeed	in	all	circumstances.	To	some
extent,	all	social	learning	heuristics	depend	upon	some	kind	of	individual	updating,	for
example.	Additionally,	the	differences	among	social	learning	strategies	generate	different
dynamics	for	the	quality	of	the	social	environment.	Because	our	analysis	is	explicitly
evolutionary,	it	will	turn	out	that	good	heuristics	are	those	that	can	“live	well	with
themselves.”	Such	heuristics	tend	to	shape	the	social	environments	that	they	rely	upon
for	information.	Thus	the	precise	ways	in	which	the	physical	and	social	environments
interact	play	a	large	role	in	determining	the	long-term	evolutionary	success	of	a	heuristic.

Spatial	Variation	in	the	Environment
In	this	section,	we	will	consider	what	happens	when	what	is	optimal	behavior	varies	with
spatial	location.	We	assume	that	the	environment	is	subdivided	into	a	large	number	of
distinct	patches,	each	with	a	unique	optimal	behavior;	that	is,	for	each	patch,	there	is	a
different	optimal	behavior,	and	only	one	optimal	behavior.	Optimal	behavior	within	each
patch	is	forever	the	same.	However,	different	(p.392)	 patches	never	have	the	same
optimal	behavior.	Within	each	patch,	a	large	subpopulation	of	organisms	follows	the	life
cycle:	(1)	birth,	(2)	learning,	(3)	behavior,	(4)	migration,	(5)	reproduction,	(6)	death.
Individuals	are	born	naïve	and	must	use	some	strategy	to	acquire	behavior.	If	that
behavior	is	optimal	for	the	local	patch,	then	the	individual's	fitness	is	multiplied	by	the
factor	1	+	b	〉	1.	Otherwise,	fitness	is	unchanged.	A	proportion,	m,	of	the	local	population
emigrates	to	other	patches,	and	an	equal-sized	group	immigrates	from	other	patches.
Generations	overlap	only	long	enough	for	newly	born	naïve	individuals	to	possibly	learn
from	the	previous	generation	of	adults.	Because	of	migration,	some	of	the	adults	available
to	learn	from	are	immigrants,	all	of	whom	possess	non-optimal	behavior	for	their	new
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patch.	Although	fitness	is	assigned	in	natal	patches,	we	assume	that	adults	continue	to
display	their	behavior	after	migration,	and	so	naïve	individuals	run	the	risk	of	learning
from	immigrants.	Additionally,	we	assume	that	naïve	individuals	cannot	tell	who	is	and	is
not	a	native	of	their	local	patch.	Even	though	such	cues	might	be	available	in	many
circumstances,	they	are	certainly	not	always	available.	We	now	determine	the	expected
fitness	of	an	organism	using	each	of	the	four	learning	heuristics.

Individual	Updating

The	expected	fitness	of	an	individual	updater	is:

(3)	
where	0	〈	c	〈	1	is	a	multiplicative	cost	to	survival	or	reproduction.	Provided	that	(1	+	b)c
〉	1,	individual	updating	will	be	the	best-adapted	heuristic,	whenever	the	quality	of	social
information	in	the	local	patch,	q,	is	equal	to	zero.	However,	because	individual	updating
quickly	increases	the	frequency	of	optimal	behavior	in	the	local	patch,	this	heuristic
quickly	generates	a	social	environment	favorable	to	one	social	learning	heuristic	or
another.

Unbiased	Social	Learning

Précis:	Although	individual	updaters	generate	locally	adaptive	behavior	that	social
learners	can	exploit,	mixing	among	patches	erodes	this	information.	Therefore,
unbiased	social	learning	can	invade	a	population	using	individual	updating,
provided	that	mixing	among	patches	is	not	too	strong.	Unbiased	social	learning	can
never	completely	replace	individual	updating,	however.	Thus,	when	unbiased	social
learning	can	invade,	there	will	be	a	stable	mix	of	individual	updating	and	unbiased
social	learning	in	the	population.

(p.393)	 We	now	consider	when	unbiased	social	learning	(U)	can	outperform	individual
updating.	In	generation	t,	the	expected	fitness	of	an	individual	using	unbiased	social
learning	is:

(4)	
where	qt	is	the	frequency	of	optimal	behavior	among	targets	in	the	current	generation,	t.
To	compute	the	expected	fitness	across	generations,	we	need	an	expression	for	the
average	amount	of	optimal	behavior	in	the	population.	In	Box	14-4,	we	show	how	to
estimate	this	expression.

We	use	this	expression	to	prove	how	selection	increases	and	decreases	frequencies	of
these	two	heuristics.	As	has	been	shown	many	times	(see	Rogers,	1988,	for	a	clear
example),	neither	individual	updating	nor	unbiased	social	learning	can	exclude	each	other
under	all	circumstances,	so	models	of	this	kind	predict	that	both	(p.394)	 will	coexist,	in
the	absence	of	other	heuristics.	A	stable	proportion	of	individual	updaters	 is	found
where:

p̂
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(7)	

To	compute	the	expected	fitness	across	generations,	we	need	to	study	the	dynamics
of	q.	The	frequency	of	optimal	behavior	among	targets	at	time	t,	it	is	defined	by	the
recursion:

(5)	

where	 	is	the	proportion of	the	local	population	comprising	individual
updaters,	in	the	previous	generation.	To	understand	this	recursion,	first	consider
that	a	proportionof	targets	are	individual	updaters.	If	a	social	learning	targets	one	of
these,	then	it	is	certain	to	acquire	optimal	behavior	(before	migration).	If	instead	a
social	learner	targets	another	social	learner,	which	happens	1–	 	of	the	time,	there
is	a	chance	of acquiring	optimal	behavior,	because	that	is	the	chance	each	social
learner	in	the	previous	generation	had	of	acquiring	optimal	behavior.	Finally,	only	a
proportion	1	–	m	of	the	local	group	remains	to	be	a	potential	target	of	learning.	The
proportion	m	that	immigrates	possesses	only	non-optimal	behavior,	however	it	was
learned.	If	we	assume	that	natural	selection	of	the	frequencies	of	social	learning
heuristics	is	slow	relative	to	the	dynamics	of	q,	then	we	can	treat	pt	as	a	constant	p	in
the	expression	above	and	set	 and	solve	for	the	expected	proportion	of
optimal	behavior	among	targets:

(6)	
Numerical	work	shows	that	this	fast–slow	dynamics	approximation	is	very	accurate,
unless	selection	(proportional	to	b)	is	very	strong.

Inspecting	the	partial	derivatives	of	the	right-hand	side	shows	that	increasing	migration,
increasing	the	value	of	optimal	behavior,	and	decreasing	the	cost	of	individual	updating	all
increase	the	equilibrium	frequency	of	individual	updating:	(

).

These	results	tell	us	that,	if	migration	is	too	common,	then	unbiased	social	learning	cannot
invade	a	population	of	individual	updaters,	because	too	often	the	behavior	available	to
copy	is	appropriate	for	a	different	patch.	However,	the	amount	of	migration	that	unbiased
social	learning	can	tolerate	depends	on	the	costs	and	benefits	of	learning.	Increasing
migration,	increasing	the	value	of	optimal	behavior,	and	decreasing	the	cost	of	individual
updating	all	increase	the	equilibrium	frequency	of	individual	updating	and	decrease	the

Box	14-4:	The	Steady	State	Amount	of	Optimal	Behavior	Under	a	Mix	of	Individual
Updating	and	Unbiased	Social	Learning

pt−1 pt−1

pt−1
qt−1

= =qt qt−1 q̂

∂ /∂m⟩0,,∂ /∂b⟩0	andand∂ /∂c⟩0,," b⟩0,,c ∈ [0,,1 ],,m ∈ [0,,1 ],,(1 + b)c⟩1p̂ p̂ p̂
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frequency	of	social	learning.

Consensus	Learning

Précis:	Consensus	learning	yields	higher	fitness	and	replaces	unbiased	social
learning,	provided	that	mixing	between	patches	is	not	so	strong	as	to	make	the
expected	local	proportion	of	optimal	behavior	fall	below	one-half.	If	mixing	is
sufficiently	weak	and	individual	updating	sufficiently	costly,	then	consensus
learning	can	actually	out-compete	both	individual	updating	and	unbiased	social
learning.

When	can	a	consensus	learning	heuristic	invade	a	population	of	individual	updaters	and
social	learners?	We	derived	above	that,	when	the	environment	varies	spatially,	the
population	will	approach	a	stationary	proportion	of	individual	updaters,	unless	migration	is
very	powerful	relative	to	the	value	of	optimal	behavior,	in	which	case	individual	updating
will	dominate.	At	the	stationary	mix	of	both	heuristics,	the	expected	fitness	of	both
individual	updating	and	unbiased	social	learning	is	w	0(1	+	b)c.	For	consensus	learning	to
invade,	it	only	has	to	achieve	greater	fitness	than	this.

In	Box	14-5,	we	prove	that	the	condition	for	consensus	learning	to	invade	a	population	of
individual	updating	and	unbiased	social	learning	is:

(8)	

The	expected	fitness	of	a	rare	consensus	learner	(C)	in	generation	t	is:

(9)	

where	the	factor	 was	derived	in	Box	14-2.	The	invader	faces	a
value	of,	reached	under	the	joint	action	of	both	individual	updaters	and	unbiased
social	learners.	But	regardless	of	the	value	of	q,	for	consensus	learning	to	do	better
than	either	common	heuristic,	all	that	is	required	is	that:

(10)	

Consensus	learning	is	favored	in	any	generation	in	which	the	expected	proportion	of
optimal	behavior	among	targets	is	greater	than	one-half.	Substituting	in	the
expression	for,	this	condition	simplifies	to	 .	So	as	long	as	migration	is	not	so
strong	as	to	flood	local	adaptive	learning,	which	happens	at	a	rate,	consensus	learning
can	invade	a	mix	of	individual	updating	and	social	learning.	Becauseis	a	function	of	m,
b,	c,	we	can	substitute	in	the	expression	forderived	in	the	previous	section.	Doing	so

(p.395)	 Box	14-5:	Condition	for	Consensus	Learning	to	Invade	a	Mixed	Population
of	Individual	Updating	and	Unbiased	Social	Learning

+ (1 − )(2 − 1)qt qt qt qt

m⟨ p̂

1+p̂
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results	in	condition	4	in	the	main	text.	If	consensus	learning	can	invade,	it	will	always
exclude	unbiased	social	learning.	Sometimes	consensus	learning	can	also	exclude
individual	updating.	If	consensus	learning	is	common,	then	the	expected	proportion	of
locally	optimal	behavior	is:

(11)	
This	expression	is	hard	to	interpret	directly,	but	for	small	m	(such	that	 ),it	is
approximately	1	–m,	which	shows	that	migration	tends	to	reduce	the	proportion	of
locally	optimal	behavior,	as	one	might	expect.	Using	the	exact	expression,	consensus
learning	can	exclude	individual	updating	when	 and	c	〉	(1	+
b/2)/(1	+	b),	which	is	satisfied	when	bothand	1/2	〈	c	〈	3/4.

This	is	easier	to	satisfy	as	c	increases.	This	means	that	consensus	learning	can	invade,
provided	that	individual	updating	is	sufficiently	cheap	(remember:	high	c	means	cheap
updating).	If	c	is	too	small	(too	costly),	then	there	will	not	be	enough	individual	updating	at
equilibrium	to	keep	the	average	frequency	of	optimal	behavior	(q)	above	one-half.

Consensus	learning	will	exclude	and	replace	simple	social	learning	in	this	environment,
whenever	it	can	invade.	Perhaps	counter-intuitively,	if	the	rate	of	mixing	is	low	enough,
consensus	learning	can	exclude	even	individual	updating,	which	simple	social	learning	can
never	do.	We	prove	this	also	in	Box	14-5.	Provided	migration	(p.396)	 is	weak	enough
and	individual	updating	is	expensive	enough	(but	not	too	expensive),	consensus	learning
can	dominate	the	population	entirely.	There	is	an	intermediate	range	of	individual
updating	costs	that	allows	consensus	to	dominate	a	population.

The	exact	result	here	depends	critically	on	the	precise	model	of	consensus	learning.
However,	the	qualitative	result	is	likely	to	be	quite	general.	Consensus	learning	is	a
nonlinear	form	of	social	learning.	As	a	consequence,	it	can	actively	transform	the
frequency	of	behavior	from	one	generation	to	the	next.	It	is	a	form	of	“inference,”	to
speak	casually.	When	mixing	is	weak,	this	inferential	process	can	substitute	for	costly
individual	updating,	because	the	increase	in	locally	optimal	behavior	that	consensus
learning	generates	in	each	generation	will	balance	the	loss	from	immigration.

Payoff-Biased	Learning

Précis:	Payoff-biased	learning	relies	on	the	observable	consequences	of	previous
choice.	As	a	result,	the	lower	the	correlation	between	observable	success	and
optimal	behavior	in	the	relevant	domain,	the	lower	the	benefit	of	payoff-biased
learning.	Payoff-biased	learning	can,	like	consensus	learning	and	under	the	right
conditions,	replace	both	unbiased	social	learning	and	individual	updating.	If
migration	is	weak	enough	and	error	in	judging	payoffs	great	enough,	then
consensus	learning	can	out-compete	payoff-biased	learning.

Payoff	bias	can	always	invade	and	replace	unbiased	social	learning.	The	condition	for

≈ 0m2

(1 + b )⟩ (1 + b)cw0 q̂ w0
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payoff	bias	to	invade	a	population	of	individual	updaters	and	unbiased	social	learners	is:
(12)	

The	above	simplifies	to	x	〈	1	for	all	qt∈[0,	1],	so	payoff-biased	learning	dominates
unbiased	social	learning	whenever	there	is	any	correlation	between	observable	success
and	the	behavior	of	interest.

Like	consensus	learning,	payoff	bias	is	nonlinear	and	actively	changes	the	frequency	of
adaptive	behavior	from	one	generation	to	the	next.	Also	like	consensus	learning,	this
means	that	payoff	bias	can	sometimes	exclude	individual	updating;	in	this	case,	provided
that:

(13)	

So	as	long	as	migration	is	not	too	strong	and	cues	of	payoffs	are	sufficiently	accurate,	it	is
possible	for	payoff	bias	to	completely	exclude	individual	updating.

(p.397)	 Finally,	consensus	learning	can	sometimes	invade	and	replace	payoff-biased
learning.	Consensus	can	invade	a	pure	population	of	payoff-biased	learning	and	replace	it,
provided:

(14)	

When	x	is	very	small,	payoff-biased	learning	is	highly	accurate,	and	therefore,	unless
migration	is	also	very	weak,	consensus	learning	lacks	a	sufficient	advantage.

Summary

All	of	the	aforementioned	results	explored	the	properties	of	unbiased,	consensus,	and
payoff-biased	learning	when	the	environment	varies	spatially.	We	have	shown	that
unbiased	social	learning	can	never	completely	replace	individual	updating	of	some	kind,
because	unbiased	learning	does	not	transform	the	frequency	of	optimal	behavior.	As	a
result,	it	does	nothing	to	modify	its	social	environment	for	its	own	good.	In	contrast,	both
consensus	bias	and	payoff	bias	actively	transform	the	frequency	of	optimal	behavior
across	generations,	increasing	it	slightly	above	its	previous	value	(assuming	q	〉	1/2,	x	〈
1).	As	a	result,	both	consensus	and	payoff	bias	can	completely	exclude	individual
updating,	provided	that	migration	is	not	too	common	and	individual	updating	is	sufficiently
costly.

We	think	that	such	conditions	are	actually	quite	rare	(and	as	we	show	in	the	next	sections,
completely	absent	from	our	model	of	temporal	environmental	variation),	but	they	do
reveal	a	fundamental	property	of	these	nonlinear	social	learning	heuristics:	They	actively
modify	their	social	environment,	and	this	process	can	substitute	for	individual	updating,
in	the	right	kinds	of	environments.	But	each	heuristic	modifies	the	social	environment
using	different	cues,	and	therefore	they	behave	differently	in	different	environments.	A
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symptom	of	this	fact	is	that	either	consensus	or	payoff	bias	can	dominate	the	other,
depending	upon	the	amount	of	mixing	among	patches	(m)	and	the	amount	of	error	in
judging	payoffs	(x).

Temporal	Variation
When	the	environment	varies	through	time,	instead	of	across	space,	many	of	the
principles	that	we	reported	above	hold	true.	However,	there	are	important	differences
between	temporal	variation	and	spatial	variation.	Under	purely	spatial	variation	in	optimal
behavior,	individuals	do	well	to	avoid	learning	from	immigrants	to	their	local	patch.	But
because	the	locally	optimal	behavior	does	not	change	over	time,	a	reliable	store	of	locally
adaptive	culture	can	accumulate	(as	(p.398)	 long	as	mixing	is	not	too	strong).	Indeed,
we	have	shown	that	both	consensus	and	payoff	bias	can	even	exclude	individual	updating,
maintaining	optimal	behavior	at	high	frequency,	even	though	neither	uses	individual
experience	with	the	environment.

When	the	environment	varies	through	time,	the	nature	of	the	problem	is	subtly	different.
Now	the	optimal	behavior	in	each	patch	will	eventually	change.	When	it	does,	previously
learned	behavior	may	no	longer	be	optimal.	As	a	result,	all	social	learning	heuristics	are	at
a	disadvantage,	just	after	a	change	in	the	environment.	Specifically,	we	will	assume	that
the	environment	no	longer	varies	spatially—all	patches	favor	the	same	behavior.
However,	there	is	a	chance,	u,	in	each	generation	that	all	patches	switch	to	favoring	a	new
behavior.	Because	there	is	a	very	large	number	of	alternative	behaviors,	previously
learned	behavior	may	no	longer	be	optimal.

This	kind	of	environmental	variation	also	forces	us	to	contend	with	what	evolutionary
ecologists	call	geometric	mean	fitness	(see	Orr,	2009,	for	a	recent	review	and
comparison	of	different	evolutionary	concepts	of	fitness).	When	environments	vary
through	time,	even	a	rare	catastrophe	can	mean	the	end	of	a	lineage.	As	a	result,
selection	may	favor	risk-averse	strategies	that	are	adapted	to	statistical	environments,
instead	of	current	environments	(Gillespie,	1974;	Levins,	1968).

Temporal	Variation	May	Favor	Randomized	or	Mixed	Strategies

Précis:	A	mixed	heuristic	is	one	in	which	individuals	use	two	or	more	heuristics
different	proportions	of	the	time.	When	the	environment	varies	purely	across
space,	selection	does	not	clearly	favor	either	pure	social	learning	heuristics	or
mixed	social	learning	heuristics.	When	the	environment	varies	through	time,
however,	selection	favors	mixed	over	pure	heuristics.	In	the	case	of	unbiased
social	learning	and	individual	updating,	selection	favors	the	mixed	heuristic	over
both	pure	strategies.

One	important	result	of	temporal	variation	is	that	a	strategy	that	mixes	individual	updating
and	social	learning	will	often	out-compete	both	pure	strategies.	In	the	spatial	variation
case,	it	makes	no	obvious	difference	whether	individuals	randomly	update	for
themselves,	or	learn	socially.	But	when	the	environment	varies	through	time,	natural
selection	tends	to	favor	“bet-hedging”	strategies	that	engage	in	adaptive	randomization



The Evolutionary Rationality of Social Learning

Page 18 of 27

PRINTED FROM OXFORD SCHOLARSHIP ONLINE (www.oxfordscholarship.com). (c) Copyright Oxford University Press, 2015.
All Rights Reserved. Under the terms of the l icence agreement, an individual user may print out a PDF of a single chapter of a
monograph in OSO for personal use (for details see http://www.oxfordscholarship.com/page/privacy-policy). Subscriber: Max-Planck
Society; date: 17 September 2015

of	behavior.	The	mathematics	can	be	opaque	at	first,	but	grasping	the	cause	is	easy:
Survival	and	reproduction	are	multiplicative	processes.	As	a	result,	if	a	lineage	is	ever
reduced	to	a	very	small	number	of	individuals,	then	it	will	take	a	long	time	to	recover.
Therefore,	its	strategy	has	to	both	do	well	and	avoid	bottlenecks	in	order	for	the	lineage
to	grow	quickly	and	sustain	its	(p.399)	 numbers.	When	the	environment	varies
temporally,	selection	favors	heuristics	that	attend	to	both	mean	fitness	and	variance	in
fitness.

To	apply	this	idea	to	our	social	learning	heuristics,	consider	again	the	previously
mentioned	basic	unbiased	social	learning	model.	We	showed	that	there	is	a	stable	mix	of
individual	updaters	and	social	learners	in	this	model,	lying	at:

(15)	
where	is	the	stable	fraction	of	individual	updaters.	The	average	fitness	of	both	individual
updaters	and	social	learners	at	this	proportion	is	the	same,	w	0(1	+	b)c.

Another	way	to	combine	these	heuristics	is	internally,	within	individuals.	Suppose	that
there	is	a	mixed	strategy,	IU,	that	uses	individual	updating	a	proportion	f	of	the	time	and
unbiased	social	learning	1	–	f	of	the	time.	We	prove	in	Box	14-6	that	natural	selection	does
not	distinguish	among	mixed	and	pure	heuristics	in	this	model.	In	general,	when
environmental	variation	is	purely	spatial,	selection	does	not	clearly	distinguish	between
pure	and	mixed	heuristics	(although,	in	very	small	populations,	even	this	is	not	true—see
Bergstrom	&	Godfrey-Smith,	1998).

However,	when	the	environment	varies	temporally,	the	answer	changes.	Now,	because
of	the	impact	of	temporal	fluctuations	in	fitness,	the	environment	ends	up	favoring	the
mixed	heuristic	that	randomizes	its	use	of	individual	and	social	updating.	This	is	a	result	of
selection	in	temporally	fluctuating	environments	depending	upon	geometric	mean	fitness,
rather	than	arithmetic	mean	fitness	(see	Cooper	&	Kaplan,	1982;	Philippi	&	Seger,	1989,
for	reviews).	In	general,	if	the	environment	varies	temporally	between	two	states,	each
with	probability	p	1	and	p	2	respectively,	then	the	long-term	growth	rate	is:

(16)	

This	is	in	fact	the	geometric	mean	fitness	of	the	strategy.	Evolutionary	ecologists	usually
work	with	the	natural	logarithm	of	this	average	 ,

In	the	case	of	analyzing	social	learning,	the	state	of	environment	is	the	time	since	the
environment	last	changed,	and	this	could	be	anything	from	one	generation	ago	to	an
infinity	of	generations	ago.	This	might	seem	daunting	at	first,	but	it	is	really	just	an
application	of	the	logic	above,	extrapolating	from	two	states	of	the	environment	to	an
infinity	of	states.	The	kind	of	fitness	expression	we	seek	is

(17)	

log[ ] = log[ ] + log[ ]r̄ p1 w1 p2 w2

= 1
n

i
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for	n	environmental	states,	where	 .

Consider	an	alternative	“mixed”	strategy	that	internally	randomizes	between
individual	updating	(I)	and	unbiased	social	learning	(U).	This	heuristic's	expected
fitness	is:

(18)	

where	f	is	the	fraction	of	the	time	that	the	individual	randomly	uses	individual
updating.	In	order	to	deduce	what	value	of	f	natural	selection	would	favor,	we	find
the	value	of	f	that	maximizes	the	fitness	of	the	strategy,	by	solving	 =
0	for	 .	This	yields:

(19)	
which	is	the	same	expression	as	Equation	15	and	therefore	expected	fitness	at	this
optimal	value	of	f	is	also	w	0	(1	+	b)c,	the	same	as	either	pure	strategy	at	equilibrium.

Let	us	take	the	geometric	logic	above	and	apply	it	to	our	models	of	social	learning.	We	will
assume	again	that	there	is	a	large	number	of	alternative	behaviors,	but	instead	of	purely
spatial	variation,	we	will	now	assume	that	there	is	purely	temporal	variation.	With	each
generation,	there	is	a	chance,	u,	that	the	environment	changes	and	makes	another
random	behavior	optimal,	rendering	all	previously	learned	behavior	non-optimal.	Let	p
again	be	the	frequency	of	individual	updating	in	the	population.	In	Box	14-7,	we
demonstrate	how	to	derive	long-term	growth	rates	under	temporal	environmental
variation,	in	this	case	using	the	example	of	the	purely	unbiased	social	learning	strategy,	U.

Once	we	have	a	geometric	fitness	expression	for	a	heuristic,	we	can	analyze	its
evolutionary	dynamics.	Unfortunately,	the	form	of	this	expression	makes	the	mathematics
intractable.	There	are	no	algebraic	methods	for	closing	such	an	infinite	sum,	in	which	the
power	t	is	both	outside	and	inside	the	logarithm.	We	can	make	progress,	however,	by
constructing	an	approximation	that	is	valid	for	weak	selection.	In	Box	14-8,	we
demonstrate	how	to	construct	weak-selection	approximations	for	this	model.

Finally,	we	are	ready	to	again	consider,	now	in	the	context	of	temporal	variation,	the
family	of	alternative	heuristics	that	randomize	their	updating,	using	individual	updating	(I)
a	proportion	f	of	the	time	and	unbiased	social	updating	(U)	a	proportion	1	–	f	of	the	time.
Using	the	same	logic	that	allows	writing	the	expression	r(U)	in	Box	14-7,	the	long-run
growth	of	this	mixed	heuristic	is:

= 1∑
i=1

n

pi

(p.400)	 Box	14-6:	Spatial	Variation	Does	Not	Favor	Either	Mixed	or	Pure	Heuristics

∂w(IU)/∂f|f=f ∗

f ∗
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(20)	

Let	p	again	be	the	frequency	of	individual	updating	in	the	population.	One	generation
after	a	change	in	the	environment,	the	proportion	of	adaptive	behavior	is	q(1)=	p,
because	individual	updaters	have	had	one	generation	to	pump	new	knowledge	into
the	society.	After	one	more	generation	without	another	change,

.	Then	
.	This	series	continues	and	implies	that,	if	the

environment	changed	t	〉	0	generations	ago,	the	expected	chance	of	acquiring	optimal
behavior	via	social	learning	is:

(21)	

We	can	compute	the	expected	value	of	q(t)	for	any	generation	t,	if	we	are	willing	again
to	assume	that	p	changes	slowly,	relative	to	q.	In	that	case,	in	any	given	generation,
there	is	a	chance,	u,	that	the	environment	changed	in	the	most	recent	generation	(t	=
0),	and	therefore	only	those	who	updated	individually	have	optimal	behavior.	There	is
a	chancethat	the	environment	changed	one	generation	ago	(t	=	1).	In	general,	there	is
a	chancethat	the	environment	last	changed	t	generations	ago.	Using	the	definition	of
log-geometric	mean	fitness,	we	build	the	growth	rate	of	an	unbiased	social	learner
(U)	by	multiplying	each	probability	of	each	environmental	state	by	the	log-fitness	in
that	state:

(22)	
The	above	can	be	motivated	in	the	following	way.	Expected	fitness	is	the	product	of
each	fitness	raised	to	the	probability	of	its	occurrence,	so	the	expected	log-fitness	is
the	sum	of	each	log-fitness	multiplied	by	the	probability	that	it	occurs.	If	the
environment	has	just	changed,	which	happens	u	of	the	time,	then	the	individual
receives	w	0.	The	other	possibility	is	that	the	environment	has	not	changed	in	the	last
t	generations,	yielding	a	chance	q(t)	of	fitness	w	0(1	+	b)	and	a	chance	1	–	q(t)	of
fitness	w	0,	for	each	individual	using	this	heuristic.	That	is,	every	social	learner
experiences	the	same	q(t)	in	any	generation	t,	and	the	value	of	q(t)	is	determined	by
the	probabilities	.	But	a	proportion	q(t)	of	social	learners	will	get	lucky	and	choose	a
target	with	optimal	behavior,	whereas	the	rest	will	not.	Thus	the	probability	q(t)	is
inside	the	logarithm.

Using	this	expression,	we	prove	in	Box	14-9	that	the	mixed	heuristic	that	randomly	uses
individual	and	social	updating	will	invade	and	ultimately	replace	a	population	of	purely

(p.401)	 Box	14-7:	Log-Geometric	Growth	Rate	of	Unbiased	Social	Learning

q(2) = p + (1 − p)q(1) = p + (1 − p)p = 1 − (1 − p) 2

q(3) = p + (1 − p)q(2) = 1 − (1 − p) 3
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individual	and	social	updaters.	This	was	not	the	case	for	purely	spatial	environmental
variation.	The	reason	for	the	different	result	owes	to	bet-hedging	(Philippi	&	Seger,	1989)
against	the	small	payoff	to	social	updaters,	soon	after	a	change	in	the	environment.
Because	the	mixed	heuristic	spreads	its	bets	over	two	different	portfolio	options—
individual	updating	and	social	updating—it	experiences	reduced	risk	of	ruin,	like	purely
individual	updating,	but	also	reaps	higher	rewards	when	the	quality	of	socially	learned
behavior	is	high,	like	unbiased	social	learning.	This	is	mathematically	homologous	to	human
investors’	spreading	risk	over	multiple	stocks,	because	even	if	the	chance	of	any
individual	stock	losing	most	of	its	value	is	low,	if	all	assets	are	placed	in	a	single	stock,
eventually	all	of	one's	assets	will	lose	most	of	their	value.	Similarly,	the	mixed	heuristic
outperforms	both	pure	heuristics,	because	this	strategy	is	never	entirely	ruined	by	a
change	in	the	environment,	but	neither	does	it	entirely	forgo	the	gains	to	social	learning
that	accrue	when	the	environment	remains	stable.	Both	pure	heuristics	instead	take	risks
by	betting	entirely	on	one	kind	of	event	or	the	other.

Weak	selection	applies	when	b	and	(1	–	c)	are	small	such	that	terms	of	orderand	and
greater	are	approximately	zero.	The	use	of	weak	selection	approximations	is	common
in	evolutionary	ecology,	because	it	often	makes	otherwise	intractable	problems
analytically	solvable.	One	must	keep	in	mind,	however,	that	our	conclusions	from	here
will	only	be	exactly	valid	for	choices	that	have	modest	effects	on	fitness.	However,
numerical	work,	as	well	as	the	simulations	we	show	in	a	later	section,	confirms	that
the	qualitative	conclusions	we	reach	here	are	general	to	strong	selection.	To	apply	the
weak	selection	approximation,	we	use	a	Taylor	series	expansion	of	r(U)	around	b	=	0,
c	=	1,	and	keep	the	linear	terms	in	b,	c.	This	gives	us:

(23)	

We	wish	to	compare	this	expression	to	the	weak	selection	approximation	of	the
growth	rate	of	individual	updating,	which	by	the	same	method	is	

Selection	will	adjust	p	until	r(U)	=	r(I),	which	implies	an
expected	long-run	value	of	p:

(24)	
This	is	the	same	as	Equation	15,	once	we	apply	the	weak	selection	approximation	and
let	m	=	u.	We	will	need	this	result	in	order	to	compare	the	two	pure	heuristics	to	the
mixed	heuristic	in	the	temporal	variation	context.

The	important	lesson	here	is	that	temporal	variation	strongly	favors	a	fundamentally
different	way	of	combining	heuristics,	mixing	them	within	individuals	rather	than	among
individuals.	In	this	way,	the	physical	environment,	whether	variation	is	spatial	or	temporal,

(p.402)	 Box	14-8:	Weak	Selection	Approximation

r(I) ≈ log[ ] + b − (1 − c)w0
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favors	different	social	learning	strategies	and	combinations	of	those	strategies.	This,	in
turn,	leads	us	to	make	different	predictions	about	the	kinds	of	heuristics	that	will	be
adapted	to	different	domains	of	behavior,	depending	in	part	on	the	relative	strengths	of
spatial	and	temporal	variation.

It	should	be	noted,	however,	that	the	model	in	this	section	is	still	just	a	model—it	is
limited	to	fairly	particular	assumptions	about	the	environment	and	the	heuristics.	The
temporal	variation	here	is	not	autocorrelated—if	the	environment	has	just	changed,	it	is
no	more	or	less	likely	to	change	again.	Real	environments,	ecological	measurements
suggest,	tend	to	include	a	good	amount	of	autocorrelation,	as	evidenced	by	“red”	noise
in	their	time	series	(Whitehead	&	Richerson,	2009).	Although	we	see	no	reason	why	the
conclusions	here	should	not	extend,	qualitatively,	to	autocorrelated	environments,	we	do
believe	that	it	is	a	problem	worth	modeling.

Assuming	the	IU	heuristic	is	rare	and	that	q(t)	is	therefore	determined	only	by	the
proportions	of	pure	individual	and	social	updaters,	p,	and	again	that	selection	is	weak,
the	above	closes	to:

(25)	

By	comparing	the	above	to	the	growth	rates	for	the	pure	strategies,	it	turns	out	that
this	mixed	strategy	can	invade	the	stable	mix	of	pure	strategies,	for	any	value	of	f.
The	condition	for	a	rare	IU	individual	to	invade	the	mix	of	I	and	U	is	

where	is	defined	by	Equation	24	in	Box	14-8.	This	condition	is	satisfied
for	all	b	〉	0,	0	〈	c	〈	1,	0	〈	u	〈	1,	which	means	the	mixed	strategy	can	always	invade	a
population	of	pure	heuristics.	This	kind	of	result	is	typical	of	game-theoretic	solutions
of	this	kind.	The	value	of	f	does	not	matter	for	invasion,	because	whatever	the	value
of	f,	the	first	mixed	strategy	individual	will	behaviorally	simulate	either	a	pure	I	or	a
pure	U	individual.	Because	both	I	and	U	have	the	same	fitness	at	p	=	;	it	makes	no
difference	which	of	these	heuristics	is	realized.	The	value	of	f	will	matter,	however,	as
IU	increases	in	frequency.	Once	common,	it	turns	out	that	the	mixed	heuristic	IU	is
also	always	stable	against	invasion	by	pure	I	and	U.	To	prove	this,	we	need	to
calculate	the	optimal	value	of	f	=	f*	that	no	other	value	of	f	can	invade.	When	IU	is
common,	the	proportion	of	optimal	behavior	is	now	given	by:

(26)	

where	f*	is	the	common	chance	a	IU	individual	updates	individually.	The
evolutionarily	stable	value	of	f*	is	found	where	 .	Again	using	a
weak	selection	approximation	and	solving	the	above	for	f*	yields:

(p.403)	 Box	14-9:	Evolutionary	Dynamics	of	IU	Under	Weak	Selection

r(IU ⟩r(I))|p=p̄

∂r(IU)/ = 0∂f|f=f ∗
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(27)	
By	substituting	the	value	of	f*	back	into	r(IU),	one	can	derive	the	growth	rate	of	the
mixed	strategy	when	it	is	common	and	using	the	optimal	value	of	f.	We	ask	when	

and	when	 .	Both	of	these	conditions	are
true	for	all	b	〉	0,	0	〈	c	〈	1,	0	〈	u	〈	1,	so	the	mixed	heuristic	can	both	invade	a
population	of	pure	heuristics	as	well	as	resist	invasion	by	either	pure	heuristic.

(p.404)	 Consensus	Learning	Less	Favored	Under	Temporal	Variation

Précis:	When	the	environment	varies	through	time,	consensus	learning	does	much
worse	than	it	does	under	spatial	variation.	It	can	never	exclude	individual	updating,
because	every	time	the	environment	changes,	q	〈	1/2	for	at	least	one	generation.
As	a	result,	consensus	learners	do	badly	compared	to	unbiased	learners.	However,
adding	in	some	spatial	variation	as	well	helps	consensus	learning	recover.

In	the	case	of	purely	spatial	variation,	we	have	already	demonstrated	that	consensus
learning	can	in	fact	exclude	both	simple	social	learning	and	individual	updating,	provided
that	the	rate	of	mixing	between	locales	is	sufficiently	low.	Under	purely	temporal
variation,	consensus	learning	can	never	exclude	the	other	social	learning	heuristics.	Just
after	a	change	in	the	optimal	behavior,	all	previously	learned	behavior	is	non-optimal.
Therefore,	inferring	behavior	from	the	majority	will	lead	to	stabilizing	nonadaptive
behavior.	As	a	result,	consensus	learning	depends	on	some	other	heuristic—or	mix	of
heuristics—to	increase	the	frequency	of	newly	optimal	behavior,	after	a	change	in	the
environment.

The	mathematics	of	this	case	are	complex,	because	accounting	for	geometric	fitness
effects	and	the	nonlinearities	of	consensus	learning	is	analytically	difficult.	But	the	results
are	easy	to	visualize	in	simulation	from	the	fitness	definitions.	(The	short	simulation	code
can	be	obtained	from	the	first	author.)	Figure	14-2	plots	the	proportions	of	consensus
learning,	unbiased	social	learning,	and	individual	updating	through	time,	for	both	purely
spatial	and	purely	temporal	environmental	variation.	In	the	absence	of	temporal	variation
in	optimal	behavior,	consensus	learning	can	actually	exclude	both	individual	updating	and
unbiased	social	learning	(Panel	A).	However,	under	purely	temporal	variation	in	the
environment,	consensus	learning	does	quite	poorly,	owing	to	its	drop	in	frequency	each
time	the	environment	shifts	from	one	optimal	behavior	to	another	(Panel	B).

A	small	amount	of	spatial	variation	and	mixing	can	go	a	long	way	towards	helping
consensus	learning,	however	(Figure	14-2,	Panel	C).	Whereas	temporal	variation	hurts
consensus	learning	much	more	than	it	hurts	unbiased	social	learning,	spatial	variation	and
mixing	hurts	unbiased	learning	more	than	it	hurts	consensus	learning.	After	a	change	in
the	environment,	consensus	social	learners	suffer	reduced	fitness,	declining	in	frequency
as	individual	updating	increases	in	frequency	(see	the	time	series	in	Panel	C).	But	once
the	local	frequency	of	optimal	behavior	has	increased,	unbiased	social	learners	have	no

r(IU ⟩r(I))|f=p=f ∗ r(IU ⟩r(U)|f=p=f ∗ )|p=f ∗
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particular	advantage	over	consensus	social	learners.	Meanwhile,	consensus	social
learners	avoid	learning	from	immigrants	with	behavior	adapted	to	other	patches,
whereas	unbiased	(p.405)

Figure	14-2: 	Stochastic	simulations	of	the	evolution	of	three	learning
strategies,	under	either	spatial	(Panel	A),	temporal	(Panel	B),	or
simultaneous	spatial	and	temporal	environmental	variation	(Panel	C).
In	all	three	conditions,	the	initial	proportions	for	consensus	learning,
unbiased	social	learning,	and	individual	updating	are	0.1;	0.1,	and
0.8,	respectively,	and	b	=	0.5	and	c	=	0.8,	respectively.	Additionally,
for	purely	spatial	variation,	m	=	0.05	and	u	=	0;	for	purely	temporal
variation,	m	=	0	and	u	=	0.05;	and	for	simultaneous	spatial	and
temporal	environmental	variation,	u	=	m	=	0.05.

(p.406)	 social	learners	do	not.	Reintroducing	mixing	among	spatially	variable	patches
provides	a	constant	environmental	challenge	that	partially	resuscitates	consensus
learning.	Therefore	it	is	not	a	valid	conclusion	that	consensus	learning	is	poorly	adapted
whenever	environments	vary	through	time.	Instead,	we	should	conclude	that	temporal
variation	works	against	consensus	learning,	whereas	mixing	and	spatial	variation	work	for
it.	If	either	force	is	strong	enough,	it	can	eclipse	the	other.
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The	same	principle	applies	in	the	case	of	consensus	learning	in	temporally	varying
environments	as	holds	for	unbiased	social	learning:	A	mixed	individual	updating	and
consensus	strategy	will	do	better	than	a	mix	of	pure	strategies.	We	do	not	belabor	this
point	here,	because	we	know	of	no	additional	intuitions	to	be	acquired	from	the	analysis.
But	one	should	not	conclude	that	mixed	randomizing	heuristics	would	not	be	favored	for
consensus	learning	as	they	would	be	for	unbiased	social	learning.	Indeed,	the	bet-
hedging	will	arguably	be	stronger	in	the	case	of	consensus	learning,	because	the	effects
of	a	recent	change	in	the	environment	are	harsher	for	consensus	learning	than	they	are
for	unbiased	social	learning.	At	the	same	time,	because	consensus	learning	can	drive	the
proportion	of	optimal	behavior	both	downwards	(when	q	〈	1/2)	as	well	as	upwards	(when
q	〉	1/2),	the	dynamics	may	be	much	more	complex	and	interesting.

Summary

In	this	section,	we	have	analyzed	the	effects	of	temporal	environmental	variation	on
unbiased	and	consensus	learning	heuristics.	Temporal	variation	requires	a	different
approach	to	calculating	evolutionarily	relevant	payoffs,	because	if	a	strategy	is	reduced	to
zero	numbers	in	any	generation,	then	the	strategy	is	dead	forever.	This	“bottleneck”
effect	can	have	important	consequences	for	the	evolutionary	rationality	of	heuristics.	This
principle	leads	us	to	two	main	results.

First,	temporal	variation	can	favor	internally	mixed	heuristics,	when	purely	spatial
variation	does	not.	The	reason	is	that	temporal	variation	favors	bet-hedging	heuristics
that	spread	risk	across	alternative	behavioral	strategies.	In	this	case,	a	mixed	strategy
that	randomly	deploys	individual	updating	and	unbiased	social	updating	always	replaces	a
population	of	purely	individual	updating	and	unbiased	social	learning	strategies,	when
there	is	purely	temporal	variation	in	the	environment.

Second,	consensus	learning	is	disadvantaged	under	temporal	variation.	The	reason	is
that,	just	after	a	change	in	the	environment,	all	learned	behavior	is	non-optimal.	As	a
consequence,	the	majority	behavior	provides	an	invalid	cue	to	optimality	in	this	context.
Once	some	other	heuristic	or	set	of	heuristics	has	again	increased	optimal	(p.407)
behavior	in	the	population,	consensus	can	do	well,	but	lost	fitness	during	the	transition
can	cause	it	to	be	out-competed	by	other	social	learning	heuristics.	This	does	not	happen
under	purely	spatial	variation,	because	a	constant	stream	of	immigrants	actually	provides
an	environmental	challenge	to	which	consensus	learning	is	well	suited,	provided	that
mixing	is	not	so	strong	as	to	make	the	majority	of	local	behavior	non-optimal.
Simultaneously	combining	spatial	and	temporal	variation	shows	that	consensus	learning
can	be	profitable	when	temporal	variation	is	present,	provided	that	there	is	enough
spatial	mixing	and	spatial	variation.

Conclusions
We	have	analyzed	the	long-term	success	of	various	social	learning	heuristics.	Specifically,
we	have	examined	their	ability	to	persist	and	to	replace	other	heuristics,	and	we	have
done	this	in	two	broadly	different	kinds	of	environments:	environments	in	which	the
optimal	behavior	varies	across	space,	or	through	time.	Because	each	social	learning
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heuristic	also	shapes	its	environment	as	individuals	use	it,	our	analysis	has	been	at	the
same	time	ecological,	game-theoretic,	and	evolutionary:	The	performance	of	each	social
learning	heuristic	depends	on	assumptions	about	the	environment	and	population
structure	in	which	it	is	used.	The	use	of	a	particular	social	learning	heuristic	will	affect	the
success	of	this	and	other	social	learning	heuristics	over	time.	Therefore,	our	analysis	is
directed	at	the	long-term	survival	and	reproduction	of	each	social	learning	heuristic.

According	to	our	analysis,	temporal	and	spatial	variation	favors	different	social	learning
heuristics.	We	are	skeptical	that	there	will	be	any	learning	strategy,	social	or	not,	that	is
best	in	all	contexts.	Instead,	the	type	of	analysis	in	this	chapter	suggests	that	over	either
evolutionary	or	developmental	time,	individuals	acquire	strategies	that	exploit	patterns	in
specific	environments.	In	this	way,	the	tradition	in	evolutionary	ecology	of	studying
cognitive	adaptation	via	social	learning	is	quite	similar	to	the	tradition	in	bounded
rationality.	And	like	some	analyses	in	bounded	rationality,	the	environments	in	this
chapter	are	statistical.	Instead	of	adapting	to	a	single	state	of	the	world,	the	theoretical
organisms	in	our	thought	experiments	adapt	to	a	statistical	world	in	which	randomness
and	variation	present	survival	challenges.

Successful	heuristics	are	the	ones	that	out-reproduce	competitors	over	many
generations	of	learning	and	choice,	sometimes	hedging	their	bets	against	unpredictable
bad	times.	In	any	particular	generation,	a	social	learning	heuristic	can	appear	nonsensical.
It	is	in	the	long	run,	across	the	full	distribution	of	environmental	dynamics,	that	the
evolutionary	rationality	of	each	heuristic	appears.

(p.408)	 The	breadth	of	issues	relevant	to	the	evolution	of	social	learning	is	huge.	We
have	focused	on	the	nature	of	environmental	variation,	because	this	topic	has	long	been
central	to	the	study	of	learning,	social	or	not,	in	evolutionary	ecology	(Levins,	1968).
Indeed,	fluctuating	selection	has	turned	out	to	be	central	to	broad	debates	that	touch
upon	most	corners	of	evolutionary	biology	(Gillespie,	1994).	Organisms	are	not	adapted
to	a	static	world	of	stationary	challenges,	but	rather	to	a	mosaic	world	that	varies	across
space	and	fluctuates	through	time.	A	satisfactory	account	of	the	design	of	heuristics	will
include	consideration	of	this	fact,	even	if	analyzing	static	decision	problems	is	often	a
necessary	step.

The	precise	kind	of	variation	involved	affects	our	conclusions.	This	result	reinforces	the
message	that	consideration	of	a	stochastic	world	will	have	an	important	role	to	play	in	the
study	of	heuristics,	social	or	otherwise.	In	some	cases,	even	scholars	studying	the
evolution	of	social	learning	in	fluctuating	environments	have	missed	the	importance	of	the
precise	assumptions	about	the	nature	of	the	statistical	environment.	Wakano	and	Aoki
(2007)	analyzed	a	model	of	the	evolution	of	consensus	learning	in	a	temporally	varying
environment	and	found	that	they	reached	different	conclusions	from	those	of	Henrich
and	Boyd	(1998),	who	studied	the	evolution	of	consensus	learning	under	simultaneous
spatial	and	temporal	variation.	As	we	have	shown,	temporal	variation	selects	against
consensus	learning	in	a	way	that	spatial	variation	does	not.	Although	Wakano	and	Aoki
acknowledged	the	different	assumptions	about	the	nature	of	the	environment,	they
decided	without	analysis	that	the	divergent	assumptions	had	no	role	in	explaining	their
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divergent	results.	They	instead	speculated	that	Henrich	and	Boyd	did	not	run	their
simulations	to	convergence.	Explicitly	testing	the	different	performance	of	consensus
learning	under	both	models	of	environmental	variation	would	have	shed	more	light	on	the
issue.	Whitehead	and	Richerson	(2009)	used	simulations	to	demonstrate	that,	indeed,
some	kinds	of	temporal	variation	are	worse	for	consensus	learning	than	others,	serving
to	reemphasize	the	importance	of	exactly	what	we	assume	in	the	statistical	model	of	the
environment.

More	broadly,	the	analysis	of	simple	social	learning	strategies	strongly	suggests	that
some	kind	of	social	learning	will	be	adaptive,	unless	environments	are	extremely
unpredictable.	Although	the	things	people	say	and	do	are	not	always	locally	adaptive,	the
very	action	of	a	toolbox	of	social	and	individual	updating	heuristics	can	help	construct
social	environments	in	which	it	is	worthwhile	to	attend	to	the	beliefs	of	others.	The
thought	experiments	therefore	suggest	one	reason	why	people	are	so	powerfully
influenced	by	mere	words.
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