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provision until sample collection affected only sAA activ-
ity. In summary, the results suggest several possible factors 
modulating the activity of the mammal-typical enzymes, 
such as sAA, sLYS, and sPOD, e.g., nutrition and sampling 
procedure, which have to be considered when analyzing 
differences in saliva composition of animal species.
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Introduction

Elephants are the only living representatives of the order 
Proboscidea. These herbivores descended from the 55-mya-
old Phosphatherium (Gheerbrant 2009). There are two dif-
ferent genera: Loxodonta, including the African bush ele-
phant (Loxodonta africana), and the African forest elephant 
(Loxodonta cyclotis), and Elephas which only includes the 
Asian elephant (Elephas maximus). Approximately 7.6 mil-
lion years ago, the lineage of ancestors of African elephants 
separated from the ancestry leading to mammoths and 
Asian elephants (Rohland et al. 2007).

The biotope of the African bush elephant is at present 
sub-Saharan Africa (Blanc et al. 2007), whereas the Asian 
elephant lives in South and Southeast Asia (India, Bangla-
desh, Thailand, Myanmar, Cambodia) (IUCN 2008). Both 
elephant species have a similar genome; their sequences 
align to approximately 94 % (Dastjerdi et al. 2014). Fur-
thermore, both elephant species are unspecialized gener-
alists (Codron et al. 2012). In contrast to other mammals’ 
herbivores, elephant’s gastrointestinal physiology is repre-
sented by a short digestive tract (Shoshani and Eisenberg 
1982; Clauss et al. 2003). In general, their digestion has 
been shown to be more inefficient in the exploitation of 
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nutrients compared to other hindgut fermenting animals, 
e.g., horses (Clauss et al. 2003). Elephants consume a wide 
variety of plants depending on seasonal and regional abun-
dance. Their diet consists of fruits, bulbs, and roots in addi-
tion to grasses, forbs, shrubs, and trees (Ullrey et al. 1997). 
Elephants tend to graze and browse which vary depending 
on the habitat and the season (Guy 1976; Koch et al. 1995; 
Ullrey et al. 1997; Codron et al. 2006). African as well as 
Asian elephants tend to graze during the 4-month wet sea-
son, feeding on forbs and sedges. In the dry months, trees, 
shrubs, forbs browse, barks, wood, and twigs dominate the 
diet of both species, characterizing them rather as browser 
(Wing and Buss 1970; De Boer et al. 2000; Mohapatra 
et al. 2013). Overall, both elephant species prefer brows-
ing, although both lineages were formerly grazers (Cerling 
et al. 1999).

Studies on nutrition habits of African elephants recog-
nized a diverse number of plant species (36–133) ranging 
from large trees to small herbs depending on the season 
(Guy 1976; Kabigumila 1993). A study on Asian elephants 
showed that they consume 95–112 different plant species, 
but mostly feed on only 25 of these plants, about 85 % of 
the whole food intake (Sukumar 1989; De Boer et al. 2000). 
The feeding behavior of Asian elephants is characterized by 
a highly seasonal selection of food, which is driven by the 
protein content of the available food (Guy 1976; Joshi and 
Singh 2008; Mohapatra et al. 2013). Besides, it has been 
shown that Asian elephants might ingest a higher propor-
tion of grasses than Africans (Cerling et al. 1999).

In addition, the two elephant species differ in a few other 
aspects. Investigations on calcium concentration in serum 
and plasma of both species showed that Asian elephants 
have a lower calcium concentration in plasma than African 
elephants (van Sonsbeek et al. 2013). Therefore, there are 
obvious differences in anatomy and morphology (Dhindsa 
et al. 1972), i.e., the number of ribs and trunk fingers, size 
of ears, and shape of back and head (Laursen and Bekoff 
1978; Shoshani and Eisenberg 1982). All these differences 
might have evolved, because elephants occupy slightly 
diverse ecological niches. For example, grass is more diffi-
cult to chew than plant material during browsing (reviewed 
by Shipley 1999; Sanson 2006), and requires longer reten-
tion times for its digestion (Hummel et al. 2006). Ana-
tomical differences of the intestines between the two spe-
cies have been interpreted as an adaptation to differential 
proportions of grass in the diet of the respective elephant 
species (Shoshani and Eisenberg 1982; Clauss et al. 2007). 
Besides the gastrointestinal organs, e.g., the stomach and 
intestine, accessory structures, such as molar teeth, and the 
salivary glands play an important role during the exploita-
tion of nutrients. The morphological adaptation to different 
proportions of grass in their diet might also continue in the 
oral cavity. For example, the teeth of Asian elephants have 

more enamel ridges than African elephants (Todd 2010), 
probably for the mastication of this difficult to chew mate-
rial. This leads to the assumption that further adaptations 
may have arisen due to their special diet, e.g., the saliva 
composition, which plays an essential role during initiation 
of digestion in mammals.

Saliva is mainly released by the three major glands 
(parotid, submandibular, and sublingual) and to a lesser 
degree by a great number of minor salivary glands (Shack-
leford and Klapper 1962; Veerman et al. 1996; Sreebny 
2000). Its evolutionarily selected physiological functions 
range from the protection of teeth and pre-digestion of 
food to the lubrication and rinsing of the oral cavity. Saliva 
has been intensively investigated in humans. It consists of 
99 % water and 1 % solid organic, and inorganic compo-
nents (Lima et al. 2010). Important enzymatic components 
in human saliva are amylase, lysozyme, and peroxidase 
(Kaufman and Lamster 2000; Humphrey and William-
son 2001; Nater and Rohleder 2009). Salivary α-amylase 
(sAA, EC 3.2.1.1) is one of the key digestive enzymes 
in the saliva of many mammals, and is even the most 
abundant protein in human parotid saliva (Noble 2000; 
reviewed by Nater and Rohleder 2009; Carpenter 2013; 
Boehlke et al. 2015). This hydrolase initiates the poly-
saccharide digestion by cleaving their α-(1,4)-glycosidic 
bonds. Salivary lysozyme (sLYS, EC 3.2.1.17) has an anti-
bacterial function based on its muramidase activity (Lai-
ble and Germaine 1985), which cleaves peptidoglycans of 
bacteria cell walls (Wang and Germaine 1993). Salivary 
peroxidase (sPOD, EC 1.11.1.7) has a major antioxidant 
and antimicrobial function (Battino et al. 2002; Ihalin et al. 
2006). sPOD is responsible for the reduction of hydrogen 
peroxide (H2O2) and the oxidation of thiocyanate. In addi-
tion, it can prevent bacterial colonization in the oral cavity 
(Steele and Morrison 1969; Björck et al. 1975; Pruitt and 
Adamson 1977).

So far, elephant saliva composition is largely unknown. 
Only two studies pertaining to the saliva of African ele-
phants have been published to date. One study focused 
on inorganic composition, and detected salivary chloride, 
magnesium, potassium, calcium, and phosphorus (Rauben-
heimer et al. 1988). Furthermore, urea, glucose, and cre-
atinine were present in the saliva of African elephants, but 
surprisingly, sodium and albumin were absent (Raubenhe-
imer et al. 1988). Beside this study, another investigation 
focused on the content of salivary steroid hormones, e.g., 
progestin, depending on menstrual cycle of female Afri-
can elephants (Illera et al. 2014). In Asian elephants, sali-
vary cortisol levels have been determined and were found 
to vary with season. The highest salivary cortisol concen-
trations have been observed at the end of the wet season, 
after decreasing to the lowest level at the end of dry season 
(Marcilla et al. 2012).
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To our knowledge, broader investigations on salivary 
enzymes, i.e., lysozyme and peroxidase, in both elephant 
species are lacking, and only one study stated the lack of 
salivary α-amylase in African elephants (Raubenheimer 
et al. 1988), whereas no study investigated sAA in Asian 
elephants. Even more important, no study design compared 
directly the salivary profiles of African and Asian elephants. 
The different morphological adaptions of elephants to dif-
ferent proportions of grass in their diet, as described above, 
led to the possibility that the salivary composition of Asian 
and African elephants differs from each other, in addition 
to the question if the initiation of digestion in elephants is 
as important as in humans (reviewed by Touger-Decker and 
Van Loveren 2003; Butterworth et al. 2011) and in ungu-
lates (Fickel et al. 1998; reviewed by Mason and Rushen 
2006). Indications for a potential influence of a species-
specific diet on the presence and activity of sAA have been 
reviewed previously. So far, high amounts of the enzyme 
have been detected in the saliva of many omnivorous ani-
mals in contrast to negligible up to low amounts in a few 
herbivores, and almost absent in carnivores (reviewed by 
Boehlke et al. 2015). sLYS was only investigated in domes-
tic cattle (Bos primigenius f. taurus) (Ang et al. 2011) and 
two macaque species (Macaca mulatta and Macaca fas‑
cicularis) (Polyzois et al. 1976). sPOD has been found in 
bovines (Bosprimigenius f. taurus) (Banerjee and Datta 
1986; Wheeler et al. 2011; Mau et al. 2013) as well as in 
non-human primates (Macaca mulatta and Macaca fas‑
cicularis) (Mäkinen et al. 1978). The highest amounts of 
exogenous peroxidase in animals were found in domestic 
cats (Felis silvestris f. catus) (Barabash et al. 1979). Due to 
the paucity of studies, further investigations are required to 
explore the salivary composition of mammals.

This study compares the activity profiles of salivary 
enzymes of African and Asian elephants, which are rel-
evant for protective and digestive functions in humans. In 
detail, it was aimed to determine (1) whether sAA, sLYS, 
and sPOD show similar activities in these two herbivo-
rous species, or if salivary composition has changed in a 
species-specific manner during evolutionary separation and 
adaptation of the elephant genera. In addition (2), the lack 
of sAA which has been determined for some herbivorous 
species (Raubenheimer et al. 1988; reviewed by Boehlke 
et al. 2015) should be verified for elephants.

Methods

Subjects and their nutrition

In July 2015, saliva samples (n = 22) were collected from 
six male and eight female Asian elephants as well as from 

one male and seven female African elephants kept in three 
different zoos in Germany (Table 1).

Elephant’s diet depended on the zoos (Table 2). In all 
zoos, herbage, carrots, and apples were offered at least two 
times a day to elephants. In addition, hay and branches 
were available nearly the whole day. Main differences in 
the composition of diet are the components of the herba-
ceous plants. In Heidelberg and Dresden Zoo, the herba-
ceous diet comprised dandelion (Taraxacum spp.), clover 
(Trifolium spp.), and ribwort (Plantago lanceolata). In con-
trast, alfalfa (Medicago sativa) was the main component 
of herbaceous diet parts in Berlin’s Animal Park. Bananas 
(Musa spp.) and more different types of pellets (high starch 
content; see Appendix Table 4) were fed at Heidelberg Zoo, 
but were not part of the diet of elephants in Berlin’s Animal 
Park and Dresden Zoo.

Saliva sampling and preparations for analysis

For each elephant, two saliva samples were collected 
and pooled to achieve a sufficient saliva volume using 
Salivette® (Sarstedt, Nümbrecht, Germany), which includes 
a synthetic swab as an absorbing material. The elephants 
were in no way forced to participate in saliva collection, but 
voluntarily participated; therefore, the animals did not suf-
fer or they were stressed by the collection procedure. Due 
to this fact, the saliva collection procedure was not evalu-
ated as an animal experiment referring to the institutional 
Animal Care and Use Committee or by the German law.

Saliva collection was performed by the responsible ani-
mal caretaker of each zoo. All samples have been collected 
between 10:00 and 12:00 h; however, saliva samples from 
African elephants in Dresden Zoo were collected at 16:00 h 
due to management reasons. In addition to their daily rou-
tine, elephants are trained to respond to different com-
mands, including the command to open their mouth. Saliva 
was collected by wiping the absorbent material inside the 
whole oral cavity for at least 30 s. In detail, absorbent 
material was wiped for a few seconds under the tongue as 
well as left and right to the tongue to ensure mixed saliva of 
different salivary glands.

At Berlin’s Animal Park, sampling started after both 
species had been provided with food, and saliva collection 
was performed within 1 h for all elephants. The caretaker 
sampled a different elephant approximately every 3 min. 
Therefore, we can exclude that feeding during saliva col-
lection affected one individual but not another. However, 
the study design started with saliva collection in Asian 
elephants, and continued approximately 30 min later with 
African elephants. During the saliva collection procedure, 
bread was available for the individuals in Berlin’s Animal 
Park and Dresden Zoo; however, unfortunately, it was not 
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documented if bread was eaten before or after the saliva 
collection. In contrast to the other zoos, in Heidelberg Zoo, 
elephants had not been provided with food before sample 
collection, but bread was used to reward the individuals 
during sampling. In general, no other feed was given in any 
zoos to reward elephants than described above.

After collection, all samples were stored on dry ice until 
centrifugation (4 °C, 20 min, and 4.000 rpm). After centrif-
ugation, saliva was pooled for each elephant and stored at 
−80 °C at the Institute of Zoology, Dresden until analysis. 
The analysis of sAA, sLYS, and sPOD was performed in 
triplicates for each saliva sample.

Statistical analyses

To evaluate differences in sAA, sLYS, and sPOD activi-
ties between the elephant species and the influence of 
sex, we used the two tailed Wilcoxon–Mann–Whitney 
test (WMW-TEST) and a paired T test. To investigate the 
impact of “feed intake lengths”, i.e., the time between food 
was available for elephants and the start of sample collec-
tion, and age-related effects on different salivary enzymes, 
we ran Spearman correlations (SP). Analyses were run in 
SPSS 22.0 (IBM Corporation, Chicago, Illinois, USA). 

After normal distribution of the data was tested via Kol-
mogorow–Smirnow test and Shapiro–Wilk test combined 
with a Q–Q-plot, the paired T test was used when the data 
were normally distributed. WMW-TEST was used when 
data were not normally distributed. The significance level 
was defined as p < 0.05 for all used tests. Zero values for 
enzyme activity (0 U/ml) were considered in the same way 
as other values during statistical analyses, because they 
indicate a very low or no detectable enzyme activity.

Determination of enzyme activity

Salivary α‑Amylase (sAA)

For the investigation of sAA activity, the low-molecu-
lar-weight substrate 2-chloro-4-nitrophenyl-4-O-β-d-
galactopyranosylmaltotrioside (GalG2CNP) was used as 
described previously (Hannig et al. 2004). Briefly, this tri-
saccharide is linked at the reducing end via an α-glucosidic 
bond to the chromophore 2-chloro-4-nitrophenol. Without 
any auxiliary enzyme, sAA hydrolyzes GalG2CNP directly 
yielding the free aglycone 2-chloro-4-nitrophenolate (CNP) 
(e.g., Morishita et al. 2000) at a constant rate without a lag 
phase. CNP was determined photometrically.

Table 1  Information about 
Asian and African elephants 
from different zoos

Sex is denoted by ♀ (female) and ♂ (male). Individual’s ages are shown in years at collection time and the 
year of birth

Species Zoo Sex Individual 
number

Age at collection in years 
(year of birth)

Asian elephant (Elephas 
maximus)

Zoo Heidelberg GmbH 
(Heidelberg Zoo)

♂ 1 10 (2005)

♂ 2 9 (2006)

♂ 3 6 (2009)

♂ 4 4 (2011)

Tierpark Berlin-Frie-
drichsfelde GmbH 
(Berlin’s Animal Park)

♀ 5 3 (2012)

♀ 6 7 (2008)

♀ 7 35 (1980)

♀ 8 35 (1980)

♀ 9 22 (1993)

♀ 10 32 (1983)

♀ 11 42 (1973)

♀ 12 20 (1995)

♂ 13 3 (2012)

♂ 14 9 (2004)

African elephant (Loxo‑
donta africana)

♂ 15 8 (2007)

♀ 16 9 (2006)

♀ 17 44 (1971)

♀ 18 34 (1981)

♀ 19 27 (1988)

Zoo Dresden GmbH 
(Dresden Zoo)

♀ 20 25 (1990)

♀ 21 19 (1996)

♀ 22 20 (1995)
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Salivary lysozyme (sLYS)

The investigation of sLYS activity was performed via the 
hydrolysis of fluorescein-labelled Micrococcus lysodeicti‑
cus (EnzCheck Lysozyme assay kit; E-22013, Molecular 
Probes, Leiden, The Netherlands) as described previously 
(e.g., Vray et al. 1980).

Salivary peroxidase (sPOD)

For the investigation of sPOD activity, the fluorogenic 
2′,7′-diacetlchlorofluorescin (LDCF) was used. In the pres-
ence of peroxidase and hydrogen peroxide, the substrate 
was converted to the fluorescing dichlorofluorescin (DCF) 
as described previously (e.g., Black and Brandt 1974). The 
sensitivity of the assay was enhanced by thiocyanate (Proc-
tor and Chan 1994).

Results

First, we analyzed the effect of sex and age on the salivary 
enzymes. Sex had no impact on any of the tested enzymes: 
sAA [WMW: p = 0.647, U(15,7) = 46], sLYS [WMW: 
p = 0.307, U(15,7) = 38], and sPOD [WMW: p = 0.215, 
U(15,7) = 42]. Age was not correlated with any of the 
enzyme activities [sAA (SP: r = 0.221; n = 22; p = 0.322), 
sLYS (SP: r = 0.126; n = 22; p = 0.578), and sPOD (SP: 
r = 0.001; n = 22; p = 0.997)].

Amylase

Considering all zoos, sAA activity was significantly lower in 
African elephants (n = 8; average 16 ± 6.35 U/ml) in com-
parison with Asian elephants (n = 14; average 127 ± 105.78 
U/ml) (WMW-TEST: U(14,8) = 1, p = 0.0002) (Fig. 1; see 

Table 2  Information about the 
specific diet composition of 
elephants in different zoos

Asian elephant

(Elephas maximus)

African elephant

(Loxodonta africana)

Zoo Heidelberg 

GmbH

Tierpark Berlin-

Friedrichsfelde GmbH

Zoo

Dresden GmbH

Nutrition Herbage hay, herbaceous plants 

(clover, ribwort, 

dandelion), branches

hay, herbaceous plants 

(alfalfa), branches (poplar)

hay, herbaceous

plants (ribwort, clover, 

dandelion), branches 

(oak)

Fruits and

Vegetables

bananas - broccoli, turnip

- cabbage cabbage

apples, carrots apples, carrots apples, carrots

Cereals bread bread bread

Pellets SALVASTAR E-

Selen-Pellets,

Pre Alpin® 

Wiesencobs;

SALVANA elephant 

mineral;

wild life park pellets

SALVANA Leckerli® for 

horses;

Pre Alpin® Wiesencobs

SALVANA Leckerli® 

for horses

Powder - SALVANA elephant 

mineral powder

-
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Appendix Table 3). In Asian elephants, sAA activity dif-
fered significantly between zoos (T test: t(10.175) = 3.483, 
p = 0.006) with higher levels in Berlin’s Animal Park in 
comparison with Heidelberg Zoo (Heidelberg Zoo_n = 4; 
average: 40 ± 18.01 U/ml; Berlin’s Animal Park_n = 10; 
average: 162 ± 106.61 U/ml). However, sAA showed great 
variability in Asian elephants from Berlin’s Animal Park, 
e.g., in four out of ten individuals’ sAA activity was as 
low (n = 4; average 50 ± 15.50 U/ml) as in the four ele-
phants from Heidelberg Zoo (n = 4; average 40 ± 18.01 
U/ml). In contrast, in African elephants, sAA activity was 
independent of zoo (Berlin’s Animal Park_n = 5; average 
16 ± 7.64 U/ml; Dresden Zoo_n = 3; average 16 ± 4.93 
U/ml) (WMW-TEST: U(5,3) = 7, p = 0.881). To test for 
species effects, we only considered elephants from Berlin’s 
Animal Park due to the same nutrition and husbandry condi-
tions. Asian elephants had significantly higher sAA activity 
(162 ± 106.61 U/ml) than African elephants (16 ± 7.64 U/
ml) (WMW-TEST: U(10,5) = 0, p = 0.002) (Fig. 1).

However, we found that the time of food provisioning 
until sample collection and sAA activity was negatively cor-
related in elephants in Berlin’s Animal Park (SP: r = −0.696; 

n = 15; p = 0.004). In other words, elephants that were sam-
pled first and fed only a few minutes before sample collection 
had higher sAA activity in comparison with elephants that 
had been fed approximately 30 min before saliva collection 
took place. sAA activity was not different in saliva samples 
collected from African elephants in the forenoon in compari-
son with samples from the afternoon (Fig. 1). Therefore, time 
of the day at sampling had no impact on the sAA activity.

Lysozyme

The comparison of sLYS activity in African and Asian ele-
phants (see Appendix Table 3) revealed that they do not dif-
fer significantly (n = 8; average African 149 ± 67.11 U/
ml and n = 14; average Asian 117 ± 70.60 U/ml) (WMW-
TEST: U(14,8) = 38, p = 0.219) (Fig. 2). In Asian as well 
in African elephants, we found high inter-individual vari-
ability in sLYS activity ranging from 50 to 249 U/ml in 
Asian elephants and from 72 to 245 U/ml in African ele-
phants. Feed intake length was not correlated with sLYS 
activity in Asian and African elephants in Berlin’s Animal 
Park (SP: r = 0.129; n = 15; p = 0.648).

Zoo identity had a significant impact on sLYS activity in 
Asian elephants. Individuals from Heidelberg Zoo had a sig-
nificantly lower sLYS activity (n = 4; average 66 ± 18.44 
U/ml) than individuals from Berlin’s Animal park (n = 10; 

Fig. 1  Salivary alpha amylase (sAA) activity of two elephant species 
from three different zoos. sAA activity (U/ml) of African elephants 
(Loxodonta africana) from Berlin’s Animal Park and Dresden Zoo 
are shown by dark grey‑colored boxes. Light grey boxes indicate the 
enzyme activity of Asian elephants (Elephas maximus) from Berlin’s 
Animal Park and Heidelberg Zoo. The boxes illustrate the 25th and 
75th percentiles, bars show medians, and outliers are expressed by 
circles. The highest significance is displayed by ***(p < 0.001), and 
**(p < 0.01) illustrates a highly significant result. Total sample sizes 
(n = 22): nAfrican elephants = 8, nAsian elephants = 14

Fig. 2  Salivary lysozyme (sLYS) activity of two elephant species 
from three different zoos. sLYS activity (U/ml) of African elephants 
(Loxodonta africana) from Berlin’s Animal Park and Dresden Zoo 
is shown by dark grey‑colored boxes. Light grey boxes indicate the 
enzyme activity of Asian elephants (Elephas maximus) from Berlin’s 
Animal Park and Heidelberg Zoo. The boxes illustrate the 25th and 
75th percentiles, bars show medians, and outliers are expressed by 
circles. Significance is displayed by *(p < 0.05). Total sample sizes 
(n = 22): nAfrican elephants = 8, nAsian elephants = 14
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138 ± 43.84 U/ml) (T test: t(11.208) = 2.855; p = 0.015). 
sLYS activity differed between African elephants from dif-
ferent zoos (Dresden Zoo_n = 3, average 94 ± 19.26 U/ml; 
Berlin’s Animal Park_n = 5, average 183 ± 62.97 U/ml) (T 
test: t(5.096) = 2.947; p = 0.031). By testing differences 
between elephant species, we found that the predictor had no 
impact (T test: t(13) = 1.162; p = 0.266) on the sLYS activ-
ity of Asian elephants (n = 10; average 138 ± 73.84 U/ml) 
and African elephants (n = 5; average 183 ± 62.97 U/ml).

Peroxidase

sPOD activity was tested in 22 samples; however, sPOD 
activity was detectable with the assay in only three sam-
ples (13.6 %) from two Asian and one African elephant 
(see Appendix Table 3). The enzyme activity varied slightly 
within the two Asian elephants (ranging from 2 to 6 mU/
ml). The sPOD activity of the African elephants (3 mU/ml) 
was within the range of the Asian elephants. sPOD activity 
was not correlated with differences in feed intake lengths in 
Berlin’s Animal Park in Asian and African elephants (SP: 
n = 15; r = 0.084; p = 0.765).

Discussion

The analyses showed that sex and age had no impact on 
sAA, sLYS, and sPOD activities. For the first time, sAA 
and sLYS have been determined in an active conformation 
in elephants’ saliva which is in opposition to a previous 
study showing a lack of sAA activity in African elephants 
(Raubenheimer et al. 1988). These differences might result 
from the small sample size of only two elephants in the pre-
vious study, varying sampling conditions, and most of all 
usage of different assays.

In our study, species-specific differences in enzyme activ-
ity have been verified by considering only individuals from 
both species in Berlin’s Animal Park. The results indicate a 
species-specific difference in sAA activity, which was sig-
nificantly higher in Asian elephants compared with Africans. 
In humans, sAA activity is related to the salivary amyl-
ase copy number (AMY) (Mandel et al. 2010; Falchi et al. 
2014), which is also shown for non-human primates (Mau 
et al. 2010). Furthermore, a starch rich diet is related to high 
AMY copy numbers in humans (Perry et al. 2007; Luca 
et al. 2010). Therefore, it could be possible that the signifi-
cantly higher sAA activity in Asian elephants compared to 
African elephants is related to the amount of starch in their 
natural diet. Compared to Africans, Asian elephants might 
have a higher starch content diet, i.e., grass, including seeds, 
leaves, bulbs, and roots (reviewed by Robbins 1983; Watt 
2005; Rodiek 2010). So far, the literature on differences in 
sAA activity between browsing and grazing animals is rare. 

Based on a few studies stating uniformly low sAA activity 
in herbivores (reviewed by Boehlke et al. 2015), no differ-
ence in sAA activity between these feeding patterns can 
be assumed. However, it has been hypothesized that due to 
the tannin binding affinity of sAA, sAA activity is possibly 
higher in species which feed on a tannin-rich diet (da Costa 
et al. 2008). In contrast to grasses as monocotyledons, dicot-
yledons contain tannins (Shimada 2006; Mau et al. 2009). 
We expected a low sAA activity in monocotyledon feeding 
species; however, our data show the opposite, i.e., the more 
grass feeding Asian elephants exhibited a higher sAA activ-
ity, concluding potential other reasons for different sAA 
activities in the saliva of Asian and African elephants.

We found that feeding before sample collection affected 
sAA activity in Asian and African elephants, because the 
lag time from feeding until sample collection was nega-
tively correlated. Previously, it was determined that salivary 
enzymes and proteins can be induced by feeding (Bird et al. 
1977; Mäkinen et al. 1978; Mehansho et al. 1985; Clem-
ents et al. 1985; Clauss et al. 2005). It is likely that sAA 
was activated to increase the exploitation of nutrients in 
the saliva samples of the Asian elephants which were col-
lected first. After feeding, sAA activity decreased. Because 
the African elephants already finished feeding, this might 
explain their significantly lower sAA activity. Unfortu-
nately, each elephant was only sampled once. Therefore, to 
distinguish between species-specific and sampling effects 
on sAA activity, future studies should collect samples in a 
randomized order in both species at several different times, 
i.e., before, at the start, and after feeding.

While sAA activity increases in response to stress, due 
to the activation of the sympathetic nervous system reflect-
ing alterations in the body (Nater et al. 2005; reviewed by 
Nater and Rohleder 2009; Koh et al. 2014), the elephants in 
our study were familiar with the sample collection, due to 
sampling during their daily routine. Therefore, we consider 
that stress had only a minor or no effect on sAA activity in 
these elephants.

The time of day at sampling collection had no impact on 
sAA activity in the elephants of our study. In humans, sAA 
activity levels show a circadian pattern, with low activity 
in the morning, an increase during the course of the day, 
with the highest levels in the late afternoon (reviewed by 
Rohleder and Nater 2009). Overall, differences in feeding 
pattern of omnivores (humans) and herbivores (elephants) 
potentially affect the sAA activity. Beside this, on the basis 
of this study, no conclusion can be drawn relating to the 
diurnal rhythm of elephants’ sAA, given that animals were 
sampled only once a day.

Contrary to sAA activity, the results for sLYS and sPOD 
activities indicated no species-specific difference. In sLYS, 
high inter-individual and intra-individual variations in the 
enzyme activity within Africans and Asian elephants have 
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to be considered. Intra-specific differences may, in fact, be 
larger than inter-specific differences. However, sPOD was 
rarely detectable in saliva of any elephant species. sPOD 
activity was possible to measure only in 14 % of the elephant 
samples with this assay. While we were able to detected 
sPOD in three samples, we conclude that the assay is not 
sensitive enough to measure the low sPOD activity in ele-
phants. Moreover, all zero values in sPOD have to be seen 
in context of an only moderately standardized sample acqui-
sition in the elephants. In addition, feeding during sample 
collection might have affected sPOD activity by inhibition. 
Strong and sustainable inhibitory effects on sPOD have been 
shown for polyphenols in humans (Hannig et al. 2008).

Investigating the influence of zoo on the different salivary 
enzyme activities revealed a significant impact of zoo on the 
activity of sAA and sLYS. In contrast to individuals from 
Berlin’s Animal Park, enzyme activity was significantly 
decreased in the saliva in elephants from Heidelberg Zoo. 
These variations in enzyme activity within Asian elephants 
are probably a result of different sampling procedures or 
diets at the two zoos. Salivary enzymes respond imme-
diately to gustatory and mechanical stimuli in the mouth 
(Oberg et al. 1982; Becerra et al. 2003; Neyraud et al. 2006; 
Rohleder and Nater 2009), and the stimulation of salivary 
flow rate is conceivable due to bread (Mackie and Pangborn 
1990), which was used to reward the elephants in Heidel-
berg Zoo for their cooperation during sample collection. 
However, it has been shown that the stimulation of salivary 
flow rate does not necessarily result in elevated sAA activity 
in humans (Mackie and Pangborn 1990). The two zoos also 
differed in the dietary supplements offered to the elephants. 
Heidelberg Zoo fed SALVANA elephant mineral, wild life 
park pellets, and SALVASTAR E-Selen-Pellets in contrast 
to Berlin’s Animal Park (SALVANA elephant mineral pow-
der and SALVANA Leckerli® for horses) (Table 2). There-
fore, dietary supplements in Heidelberg Zoo contained more 
starch compared with Berlin’s Animal Park (see Appendix 
Table 4). The lower sAA activity in elephants in Heidelberg 
Zoo could be explained by the food intake and the possible 
resultant sAA activation in Asian elephants of Berlin’s Ani-
mal Park before sampling, as mentioned above. In all zoos, 
no fruits were used to reward the elephants for cooperation 
during sample collection. Therefore, direct influence of fruit 
components on the measurement of enzyme activities can 
be disregarded, e.g., ascorbic acid (Abell et al. 1998).

We found significant differences in sLYS activities within 
in African elephants from Dresden Zoo and Berlin’s Ani-
mal Park. In contrast to the elephants from Berlin’s Animal 
Park, which were provided with fresh poplar branches (Pop‑
ulus spp.), Dresden Zoo provided branches from oak trees 
(Quercus spp.). Both tree species contain tannins and thereby 
possibly interfere with sLYS activity (Green 1995), but 
potentially to a different extent. In addition, herbaceous plants 

offered to the elephants in Berlin’s Animal Park comprised 
alfalfa, whereas the herbage fed to elephants in Dresden Zoo 
comprised ribwort, clover, and dandelion. Otherwise, the 
similar low sAA activity in African elephants from Dresden 
Zoo and Berlin’s Animal Park possibly occurred irrespective 
of the nutrition but more due to sampling conditions.

The enzymes investigated in this study were chosen primar-
ily due to their high abundance and secondarily, because they 
are relevant for protective and digestive functions in human 
saliva (Battino et al. 2002; Hannig et al. 2005; Carpenter 
2013). In humans, sAA activity in unstimulated saliva ranges 
between 3 and 63 U/mL (Schlueter et al. 2012), which is 
rather similar to sAA activity in saliva of Asian elephants from 
Heidelberg Zoo (26–67 U/mL) and all African elephants (12–
30 U/mL). sPOD activity of elephants (0–6 mU/mL) is similar 
to humans (1–6 mU/mL) (Schlueter et al. 2012). In contrast, 
sLYS activity might be lower in elephants (50–246 U/mL) 
compared to results from humans (1.4–10 kU/mL) (Schlueter 
et al. 2012). Due to the use of identical assays by Schlueter 
et al. (2012) and this study, it appears that this enzyme activity 
in human and elephant saliva might be different, which easily 
can result from very different feeding patterns.

Taken together, the results indicated multiple possi-
ble factors influencing the activity of the mammal-typical 
enzymes, such as sAA, sLYS, and sPOD, i.e., diet and sam-
pling procedure, which have to be considering when pre-
paring the study design or when analyzing differences in 
saliva composition of animal species in zoos.
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