Chapter 12
Multimodel-Inference in Comparative
Analyses

Laszlé Zsolt Garamszegi and Roger Mundry

Abstract Multimodel inference refers to the task of making a generalization from
several statistical models that correspond to different biological hypotheses and
that vary in the degree of how well they fit the data at hand. Several approaches
have been developed for such purpose, and these are widely used, mostly for
intraspecific data, i.e., in a non-phylogenetic framework, to draw inference from
models that consider different predictor variables in different combinations.
Adding the phylogenetic component, in theory, calls for a more extended
exploitation of these techniques as several hypotheses about the phylogenetic
history of species and about the mode of evolution should also be considered, all of
which can be flexibly incorporated and combined with different statistical models.
Here, we highlight some biological problems that inherently imply multimodel
approaches and show how these problems can be tackled in the phylogenetic
generalized least squares (PGLS) modeling framework based on information-
theoretic approaches (e.g., by using Akaike’s information criterion, AIC) or
maximum likelihood. We present a conceptual framework of model selection for
phylogenetic comparative analyses, where the goal is to generalize across models
that involve different combinations of predictors, phylogenetic hypotheses,
parameters describing the mode of evolution, and error structures. Although this
overview suggests that a model selection strategy may be useful in several situ-
ations, we note that the performance of the approach in the phylogenetic context
awaits further evaluation in simulation studies.
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12.1 Introduction

The world is so complex that researchers are often confronted with the challenge of
assessing a large number of biological explanations for a given phenomenon
(Chamberlin 1890). Making drawing inference from multiple hypotheses tradi-
tionally involves the evaluation of the appropriateness of different statistical models
that describe the relationship among the considered variables. This task can be seen
as a model selection problem, and there are three general approaches that allow such
inference based on statistical analysis. The approach that dominated applied sta-
tistics for decades is that of null-hypothesis significance testing (NHST)
(Cohen 1994). Applying NHST, one typically states a null-hypothesis of no influ-
ence or no difference, which is then rejected or not based on a significance threshold
(conventionally, P = 0.05 that specifies the probability that one would obtain the
observed data given the null hypothesis were true). In this framework, nested
multiple models can be examined in a stepwise fashion, in which terms can be
eliminated or added based on their significance following a backward or forward
process (but see, e.g., Mundry and Nunn 2008; Whittingham et al. 2006; Hegyi and
Garamszegi 2011 for problems with stepwise model selection). The second
approach is Bayesian inference where one considers a range of ‘hypotheses’ (e.g.,
model parameters) and incorporates some prior knowledge about the probability of
the particular model parameter values to update one’s ‘belief” in what are more and
less likely model parameters (Congdon 2003; Gamerman and Lopes 2006).
Bayesian inference has a long history, but only recent increases in computer power
made its application feasible for a wide range of problems (for relevance for
comparative studies, see Chaps. 10 and 11). The third, relatively recent approach to
statistical inference is based on information theory (IT) (Burnham and
Anderson 2002; Johnson and Omland 2004; Stephens et al. 2005). Here, a set of
candidate models, which represent different hypotheses, is compared with regard to
how well they fit the data. A key component of the IT approach is that the measure
of model fit is penalized for model complexity (i.e., the number of estimated
parameters), and, as such, IT-based inference aims at identifying models that rep-
resent a good compromise between model fit and model complexity. Most fre-
quently, IT-based inference goes beyond simply choosing the best model (out of the
set of candidate models) and allows accounting for model selection uncertainty (i.e.,
the possibility that several models receive similar levels of support from the data).

Although model selection is classically viewed as a solution to the problem
caused by the large number of potential combinations of predictors that may affect
the response variable, here we propose that the comparative phylogenetic framework
involves a range of questions that require multimodel inference and approaches
based on IT. In particular, we emphasize that in addition to the variables included in
the candidate models, the models can also differ in terms of other parameters that
describe the mode of evolution, or account for phylogenetic uncertainty and heter-
ogeneities in sampling effort. In this chapter, we present general strategies for
drawing inference from multiple evolutionary models in the framework of
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phylogenetic generalized least squares (PGLS). We formulate our suggestions
merely on a conceptual basis with the hope that these will stimulate further research
that will assess the performance of the methods based on simulations. We envisage
that such simulation studies are crucial steps before implementing model selection
routines into the practice of phylogenetic modeling. Our discussion is accompanied
with an Online Practical Material (hereafter OPM) available at http://www.
mpcm-evolution.org, which demonstrates how our methodology can be applied to
real data in the R statistical environment (R Development Core Team 2013).

12.2 The Fundaments of IT-based Multimodel Inference

Given that a considerable number of primary and secondary resources discuss the
details of the IT-based approach (Burnham and Anderson 2002; Claeskens and
Hjort 2008; Garamszegi 2011; Konishi and Kitagawa 2008; Massart 2007), we
avoid giving an exhausting description here. However, in order to make our
subsequent arguments comprehensible for the general readership, we first provide
a brief overview on the most important aspects of the approach.

12.2.1 Model Fit

The central idea of an IT-based analysis is to compare the fit of different models in
the candidate model set (see below). However, it is trivial that more complex
models show better fits (e.g., larger R* or smaller deviance). Hence, an IT-based
analysis aims at identifying those models (in the set of candidate models; see
below) that represent a good compromise between model complexity and model
fit, in other words, parsimonious models. Practically, this is achieved by penalizing
the fit of the models by their complexity. One way of doing this is to use Akaike’s
information criterion (AIC), namely

AIC = =21n L 1nodeldata) + 2K, (12.1)
where
E(mode”dam maximum likelihood of the model given the data and the parameter
estimates,
k the number of parameters in the model (—21n £ mogel|data) 1 known

as “deviance”).

Two models explaining the data equally well will have the same likelihood, but
they might differ in the number of parameters estimated. Then, the model with the
smaller number of parameters will reveal the smaller AIC (and the difference in
the AIC values of the more complex and the simpler model will be twice the
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difference of the numbers of parameters they estimate). Hence, in an IT-based
analysis, the model with the smaller AIC is considered to be ‘better’ because it
represents a more parsimonious explanation of the response investigated.' Note-
worthy, some argue that AIC-based inference can select for overly complex
models and suggest alternative information criteria (Link and Barker 2006). Here,
we continue focusing on AIC with the notion that the framework can be easily
tailored for other metrics.

The core result of an IT-based analysis is a set of AIC values associated with a
set of candidate models. However, unlike P values, AIC values do not have an
interpretation in themselves but receive meaning only by comparison with AIC
values of other models, fitted to the exact same response. The model with the
smallest AIC is the ‘best’ (i.e., best compromise between model parsimony and
complexity) in the set of models. However, in contrast to an NHST analysis, it
would be misleading to simply select the best model and discard the others. This is
because the best model according to AIC (i.e., the one with the smallest AIC)
might not be the model that explicitly describes the truth (in fact, it is unlikely to
ever be). Such discrepancies can happen for various reasons, including stochas-
ticity in the sampling process (i.e., a sample is used to draw inference about a
population), measurement error in the predictors and/or the response, or unknown
predictors not being in the model, to mention just a few. An analysis in the
framework of a phylogenetic comparative analysis expands this list considerably
to include, for instance, imperfect knowledge about the phylogenetic history or the
underlying model of evolution (e.g., Brownian motion or Ornstein-Uhlenbeck). An
IT-based analysis allows dealing elegantly with such model selection uncertainty
by explicitly taking it into account (see below).

12.2.2 Candidate Model Set

A key component in an IT-based analysis is the candidate set of models to be
investigated, which classically includes models with different combinations of
predictors. The validity of the analysis is conditional on this set, and if the can-
didate model set is not a reasonable one, the results will be deceiving (Burnham
and Anderson 2002; Burnham et al. 2011). Hence, the development of the can-
didate set needs much care and is a crucial and potentially challenging step of an
IT-based analysis. First of all, different models might represent different research
hypotheses. For instance, one might hypothesize that brain size might have co-
evolved with social complexity (e.g., group size), ecological complexity (e.g.,
seasonality in food availability), or both. However, in biology, it is frequently not
easy to come up with such a clearly defined set of potentially competing models,

' When drawing inference in an IT framework, it is essential to not mix it up with the NHST
framework. Most crucially, it does not make sense to select the best model based on AIC and then
test its significance or the significance of the predictors it includes.



12 Multimodel-Inference in Comparative Analyses 309

and hence one frequently sees candidate model sets that encompass all possible
models that can be built out of a set of predictors. Furthermore, in the context of
phylogenetic comparative analysis, different models in the candidate set might
represent different evolutionary models (e.g., Brownian motion or an Ornstein-
Uhlenbeck process) or different phylogenies. It is important to emphasize that in a
phylogenetic comparative analysis both these aspects (and also other ones) can be
reflected in a single candidate set of models; that is, the candidate set might
comprise models that represent combinations of hypotheses about the coevolution
of traits, the model of evolution, and the phylogenetic history.

12.2.3 Accounting for Model Uncertainty

There are several ways of dealing with model selection uncertainty (i.e., with the
fact that not only one model is unanimously selected as best). One way is to
consider Akaike weights. Akaike weights are calculated for each model in the set
and can be thought of as the probability of the actual model to be the best in the set
of models (although there are warnings against such interpretations, e.g., see
Bolker 2007). From Akaike weights, one can also derive the evidence ratio of two
models, which is the quotient of their Akaike weights and tells how much more
likely is one of the two models (i.e., the one in the numerator of the evidence ratio)
to be the best model. Akaike weights can also be used to infer about the impor-
tance of individual predictors by summing Akaike weights for all models that
contain a given predictor. The summed Akaike weight for a given predictor then
can be considered analogous to the probability of it being in the best model of the
set (see also Burnham et al. 2011; Symonds and Moussalli 2011).

12.2.3.1 Model Averaging

One can also use Akaike weights for model averaging of the estimated coefficients
associated with the different predictors. Here, the estimated coefficients (e.g.,
regression slopes) are averaged across all models (or across a confidence set of best
models®) weighted by the Akaike weights of the corresponding models (see also
Burnham et al. 2011; Symonds and Moussalli 2011). Hence, an estimate of a
coefficient from a model having a large Akaike weight contributes more to the

2 Another way of dealing with model selection uncertainty is to consider the best model
confidence set, which contains the models that can be considered as best with some certainty.
Different criteria do exist to identify the best model confidence set among which the most popular
are to include those models that differ in AIC from the best model by at most some threshold
(e.g., 2 or 10) or, alternatively, to include those models for which their summed cumulative
Akaike weights (from largest to smallest) just exceed 0.95. In this chapter, we do not consider
such subjective thresholds further, and throughout the remaining discussion we refer to model
averaging in a sense that it is made across the full model set.
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averaged value of the coefficient. When using model averaging of the estimated
coefficients, there are two ways of treating models in which a given predictor is not
present: one is to simply ignore them (the ‘natural’ method), and one is to set the
estimated coefficient to zero for models in which the given predictor is not included
(the ‘zero’ method; Burnham and Anderson 2002; Nakagawa and Hauber 2011).
Using the latter penalizes the estimated coefficient when it is mainly included in
models with low Akaike weights, and to us, this seems to be the better method.

12.3 Model Selection Problems in Phylogenetic
Comparative Analyses

There can be several biological questions involving phylogenies, which necessitate
inference from more than one model that are equally plausible hypothetically.
Most readers might have encountered such a challenge when judging the impor-
tance of different combinations of predictor variables. However, in addition to
parameters that estimate the effects of different predictors, in a phylogenetic
model, there are several other parameters that deal with the role of phylogenetic
history or with another error term (e.g., within-species variance). The statistical
modeling of these additional parameters often requires multiple models that dif-
ferently combine them, even at the same set of predictors. Below, we demonstrate
that in most of these situations the observer is left with the classical problem of
model selection, when s/he needs to draw inferences from a pool of models based
on their fit to the data. Accordingly, the same general framework can be applied:
Competing biological questions are first translated into statistical models, and then,
multimodel inference is used for generalization.

12.3.1 Selecting Among Evolutionary Models with Different
Combinations of Predictors

The classical problem of finding the most plausible combination of predictors to
explain interspecific variation in the response variable while accounting for the
phylogeny of species is well exemplified in the comparative literature. Starting
from a pioneering study by Legendre et al. (1994), a good number of studies exist
that evaluate multiple competing models to assess their relative explanatory value
and to draw inferences about the effects of particular predictors. Below, as an
appetizer, we provide summaries of two of these studies to demonstrate the
diversity of questions that can be addressed by using the model selection frame-
work. In the OPM, we give the R code that can be easily tailored to any biological
problem requiring an AIC-based information-theoretic approach.

Terribile et al. (2009) investigated the role of four environmental hypotheses
mediating interspecific variation in body size in two snake clades. These hypotheses
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emphasized the role of heat balance as given by the surface area-to-volume ratio,
which in ectothermic vertebrates may influence heat conservation (e.g., small-
bodied animals may benefit from rapid heating in cooler climates), habitat avail-
ability (habitat zonation across mountains limits habitat areas that ultimately select
for smaller species), primary productivity (low food availability can reduce growth
rate and delay sexual maturity, which would in turn result in small-bodied species in
areas with low productivity), and seasonality (large-bodied species may be more
efficient in adapting to seasonally fluctuating resources that often include periods of
starvation). To test among these hypotheses, the authors estimated the extent to
which the patterns of body size are driven by current environmental conditions as
reflected by mean annual temperature, annual precipitation, primary productivity,
and range in elevation. They challenged a large number of models with data and
chose the best model that offered the highest fit relative to model complexity to
draw inference about the relative importance of different hypotheses. This best
model included all main predictors, but the amount of variation explained differed
between Viperidae and Elapidae, the two snake clades investigated. Moreover, the
relative importance for each predictor also varied, as indicated by the summed
Akaike weights. Consequently, none of the proposed hypotheses was over-
whelmingly supported or could be rejected, and the mechanisms constraining body
size in snakes can even vary from one taxonomic group to another.

A recent phylogenetic comparative analysis of mammals focused on the
determinants of dispersal distance, a variable of major importance for many
ecological and evolutionary processes (Whitmee and Orme 2013). Dispersal dis-
tance can be hypothesized as a trait being influenced by several constraints arising
from life history, a situation that necessitates multipredictor approaches. For
example, larger body size can allow longer dispersal distances because locomotion
is energetically less demanding for larger-bodied animals. Second, home range
size may be important, as dispersing individuals of species using larger home
ranges may need to move longer distances to find empty territories. Furthermore,
trophic level, reflecting the distribution of resources, may mediate dispersal dis-
tance with carnivores requiring more dispersed resources than herbivores or
omnivores. Intraspecific competition may also affect dispersal: species maintaining
higher local densities may also show higher frequencies of distantly dispersing
individuals which thereby encounter less competition. Finally, investment in
parental activities can be predicted to negatively influence dispersal, as species that
wean late and mature slowly will create less competitive conditions for their
offspring than species with fast reproduction. To simultaneously evaluate the
plausibility of these predictors, Whitmee and Orme (2013) applied a model
selection strategy based on the evaluation of a large number of models composed
of the different combinations (including their quadratic terms) of the considered
predictors. Even the best-supported multipredictor models had low Akaike
weights, indicating no overwhelming support for any particular model. Therefore,
they applied model averaging to determine the explanatory role of particular
variables, which indicated that home range size, geographic range size, and body
mass are the most important terms across models.
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12.3.2 Dealing with Phylogenetic Uncertainty: Inference
Across Models Considering Different Phylogenetic
Hypotheses

While phylogenetic comparative studies necessarily require a phylogenetic tree,
the true phylogeny is never known and must be estimated from morphological or,
more recently, from genetic data; thus, phylogenies always contain some uncer-
tainty (see detailed discussion in Chap. 2). In several cases, more than one phy-
logenetic hypothesis (i.e., tree) can be envisaged for a given set of species, and it
might be desirable to test whether the results found for a given phylogenetic tree
are also apparent for other, similarly likely trees.

With GenBank data and nucleotide sequences for phylogenetic inference, the
above problem is not restricted anymore to the comparison of a handful of alter-
native trees corresponding to different markers. Nonetheless, the reconstruction of
phylogenies from the same molecular data still raises uncertainty issues at several
levels. Different substitution models and multiple mechanisms can be considered for
sequence evolution, each leading to different sets of phylogenies that can be con-
sidered (note that this is also a model selection problem). Moreover, even the same
substitution model can lead to various phylogenetic hypotheses with similar like-
lihoods. As a result, in the recent day’s routine, several hundreds or even thousands
of phylogenetic trees are often available for the same list of species used in a
comparative study. The most common way to deal with such a large sample of trees
is the use of a single, consensus tree in the phylogenetic analysis. However, although
this approximation is convenient from a practical perspective, using an ‘average’
tree does not capture the essence of uncertainty, which lies in the variation across the
trees. The whole sample of similarly likely trees defines a confidence range around
the phylogenetic hypothesis (de Villemereuil et al. 2012; Pagel et al. 2004).

For the appropriate treatment of phylogenetic uncertainty, one needs to incor-
porate an error component that is embedded in the pool of trees that can be
envisaged for the species at hand. Martins and Hansen (1997) proposed that most
questions in relation to the evolution of phenotypic traits across species can be
translated into the same general linear model:

y =X +¢, (12.2)
where
y s a vector of characters or functions of character states for extant or ancestral
taxa,

X is a matrix of states of other characters, environmental variables, phylogenetic
distances, or a combination of these,

B is a vector of regression slopes,

¢ is a vector of error terms with an assumed structure.
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¢ is composed of at least three types of errors that can be assembled in a
complex way: &g, the error due to common ancestry; &y, the error due to within-
species variance or measurement error; and &p, the error due phylogenetic uncer-
tainty. The regression technique based on PGLS when combined with maximum
likelihood (ML) model fitting offers a flexible way to handle and combine the
errors & and &y (for example, they can be treated additively if they are inde-
pendent, see Chaps. 5 and 7). However, simultaneously handling the third error,
the one that is caused by phylogenetic uncertainty, ¢p, is more challenging, because
it is not an independent and additive term (Martins 1996). Approaches based on
Bayesian sampling that are discussed in Chap. 10 offer a potential solution. They
allow the use of a large number of similarly likely phylogenetic trees by effectively
weighting parameter estimates across their probability distribution and can also
incorporate errors due to within-species variance (de Villemereuil et al. 2012).
However, widely available Bayesian methods can be sensitive to prior settings and
are not yet implemented in the commonly used statistical packages.

We propose a simpler solution and suggest that when combined with multi-
model inference, approaches based on PGLS can be used to deal with uncertainties
in the phylogenetic hypothesis. The underlying philosophy of this approach is that
when a list of trees is available, each of them can be used to fit the same model
describing the relationship between traits using ML. Subsequently, parameter
estimates (e.g., intercepts and slopes) can be obtained from the resulting models,
which can then be averaged with a weight that is proportional to the relative fit of
the corresponding model to the data. The output will not only provide a single
average effect (as is the case when using a single model fitted to a consensus tree)
but will also include a confidence or error range as obtained from the variance of
model parameters across models associated with different trees. This interval can
be interpreted as a consequence of the uncertainty in the phylogenetic hypothesis,
that is, the mean estimate (model-averaged slope, or the slope that is based on the
consensus tree) with the associated uncertainty component (variance among par-
ticular slopes) will form the results together. The logic of analyzing the inter-
specific data on each possible phylogeny to obtain a sample of estimates and then
to calculate summary statistics from this distribution was already proposed by
Martins (1996). Our favored method differs with regard to that it applies a model-
averaging technique to derive the mean and confidence interval from the frequency
distribution of parameters. This can be important, because if the pool of the trees
across which the models are fitted reflects the likelihood of particular trees
explaining the evolution of taxa, the resulting model-averaged parameter estimates
will also reflect this variation.

Although apparently different trees are used in each model, drawing inference
across them does not violate the fundaments of information theory that assumes
that each model is fitted to the very same data. Different trees can be regarded as
different hypotheses that arise from identical nucleotide sequence information.
They are actually just different statistical translations of the same biological
information and act like scaling parameters on the tree. The approach may be
particularly useful when a large number of alternative trees are at hand (e.g., in the
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form of a Bayesian sample originating from the same sequence data). When only a
handful of phylogenies is available (e.g., from other published papers), model-
averaged means and variances can also be calculated, but conclusions would be
conditional on the phylogenies considered (i.e., some alternative phylogenies may
have not been evaluated). Furthermore, fitting models to trees that correspond to
different marker genes calls for philosophical issues about the underlying
assumption concerning the use of the same data.

In Fig. 12.1, we illustrate how our proposed model averaging works in practice
(the underlying computer codes are available in the OPM). In this example, we
tested for the evolutionary relationship between brain size and body size in primates
by using PGLS regression methods with ML estimation of parameters. We con-
sidered a sample of reasonable phylogenetic hypotheses in the form of 1,000 trees as
obtained from the /0KTrees Project (Arnold et al. 2010). When using the consensus
tree from this tree sample, we can estimate that the phylogenetically corrected
allometric slope is 0.287 (SE = 0.039, solid line in Fig. 12.1). However, using
different trees from /0K Trees pool in the model provides slightly different results for
the phylogenetic relationship between traits, as the obtained slopes vary (gray lines
in the left panel of Fig. 12.1). The model-averaged regression slope yields 0.292
(model-averaged SE = 0.041, dashed line in the left panel of Fig. 12.1). This mean
estimate is quite close to what one can obtain based on the consensus tree, but the
variation between the particular slopes corresponding to different trees in the sample
delineates some uncertainty around the averaged allometric coefficient. Few models
in the ML sample provide extreme estimates (note that, model fitting with one
particular tree even results in a negative slope, left panel of Fig. 12.1). However,
these models were characterized by a very poor model fit; thus, their potential
influence is downweighted in the model-averaged mean estimate.

The benefit of using the AIC-based method to account for phylogenetic uncer-
tainty over Bayesian approaches is that the former does not require prior information
on model parameters that would affect the posterior distribution of parameters, an
issue that is often challenging in the Bayesian framework (Congdon 2006) and that
is also demonstrated in Fig. 12.1. In the right panel, we applied Markov chain Monte
Carlo (MCMC) procedure to estimate the posterior distribution of parameter values
from the same PGLS equation by using (Pagel et al. 2004; Pagel and Meade 2006)
BayesTraits with the same interspecific data and pool of trees (see also Chap. 10).
Supposing that we have no information to make an expectation about the range
where parameter estimates should fall, we are constrained to use flat and uniform
prior distributions (e.g., spanning from —100 to 100).*> When we used MCMC to

3 It may not be necessarily applied to the current biological example, because allometric
regressions are intensively studied (e.g., Bennett and Harvey 1985; Hutcheon et al. 2002; Iwaniuk
et al. 2004; Garamszegi et al. 2002). Therefore, results from a large number of studies on other
vertebrate taxa may be used to define a narrower and more informative prior. However, in this
example simulated on the general situation when no preceding information on the expected
relationship is available. Note that technically BayesTraits only allows uniform priors for
continuous data.
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Fig. 12.1 Estimated regression lines for the correlated evolution of two traits (body size and
brain size in primates) when different hypotheses for the phylogenetic relationships of species are
considered and when ML (left panel) or MCMC (right panel) estimation methods are used in the
AIC-based or Bayesian framework, respectively. Gray lines show the regression slopes that can
be obtained for alternative phylogenetic trees (left panel 1,000 ML models fitted to different trees,
right panel 1,000 models that the MCMC visited in the Bayesian framework). The alternative
trees originate from a sample of 1,000 similarly likely trees that can be proposed for the same
nucleotide sequence data (Arnold et al. 2010). The dashed bold line represents the slope estimate
that can be derived by model averaging over the particular ML estimates (left panel) or by taking
the mean of the posterior distribution from the MCMC sample of 1,000 models (right panel).
Both methods provide a mean estimate over the entire pool of trees by incorporating the
uncertainty in the underlying phylogenetic hypothesis. The solid bold line shows the regression
line that can be fitted when the single consensus tree is used. The model-averaged slope, the mean
of the posterior distribution, and the one that corresponds to the consensus highly overlap in this
example (which may not necessarily be the case). However, the precision by which the mean can
be estimated is different between ML and MCMC approaches, as the latter introduces a larger
variance in the slopes in the posterior sample

sample from a large number of models with different parameters and trees and took
1,000 estimates from the posterior distribution of slopes, we detected that the
estimate is accompanied by a considerable uncertainty (Fig. 12.1, right panel). For
comparison, the 95 % confidence interval of the allometric coefficients obtained
from the ML sample is 0.278-0.312, while it is 0.211-0.373 for the MCMC sample
(i.e. the confidence interval obtained from the Bayesian framework is almost five
times wider than that from the AIC-based inference). Consequently, the Bayesian
approach introduces an unnecessary uncertainty due to the dominance of the prior
distribution on the posterior distribution.

Another benefit of using ML model fitting over a range of phylogenetic
hypotheses in conjunction with model averaging is that by doing so we can exploit
the flexibility of the PGLS framework. For example, as we discussed above, one
can evaluate different sets of predictor variables when defining models, or as we
explain below, one can also take into account additional error structures (e.g., due
to within-species variation) or different models of trait evolution (e.g., Brownian
motion or an Ornstein-Uhlenbeck process). These different scenarios can be
simultaneously considered during model definition, but can also be combined with
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alternative phylogenetic trees (some examples are given in the OPM). This will
result in a large number of candidate models representing different evolutionary
hypotheses, over which model averaging may offer interpretable inference.

Box 12.1 A simulation strategy for testing the performance
of multimodel inference

The behaviour of the AIC-based framework to account for phylogenetic
uncertainty requires simulation studies that consist of the following steps.
First, one needs to simulate a tree for a considered number of species and
under some scenario for the underlying model (e.g., time-dependent birth—
death model or just a random tree). The next step is then to simulate species-
specific trait data along the branches of the generated phylogeny. To obtain
simulated tip values, we also need to consider a model to describe the
evolutionary mechanism in effect (e.g., Brownian motion or an OU process).
We might also consider other constraints for trait evolution, for example, by
defining a correlation structure (a zero or a nonzero covariance) for two
coevolving traits. These parameters will serve as generating values, and the
underlying tree and the considered covariance structure will reflect the truth
that we want to recover in the simulation. If the interest is to examine the
performance of the model-averaging strategy to account for phylogenetic
uncertainty, we need to generate a sample of trees that integrates a given
amount of variance (e.g., both the topology and branch lengths are allowed
to vary to some pre-defined degree). For each simulation, we can then fit a
model estimating the association between the two traits by controlling for
phylogenetic effects. The phylogeny used in this model to define the
expected variance—covariance structure on the one hand can be the con-
sensus tree calculated for the whole sample of trees. On the other hand, we
can also fit the model to each tree in the sample and then do a model
averaging to obtain an overall estimate for the parameter of interest (e.g.,
slope or correlation as calculated from the model). By simulating new trait
data (and optionally new pools of trees), we can repeat the whole process a
large number of times (i.e., 1,000 or 10,000 times). At each iteration, we
will, hence, obtain estimates (either over the consensus tree or over the entire
sample of trees through model averaging) for the parameter of interest.
Finally, we can compare the distribution of these parameters over simula-
tions with the generating parameter state. The difference between the mean
of the distribution and the generating value will inform about bias of the
approach, while the width of the distribution informs about precision (the
uncertainty in parameter estimation).

As an important cautionary note, we emphasize that the performance of the
AIC-based method based on model averaging still requires further assessment with
both simulated and empirical data. In Box 12.1, we describe the philosophy of an
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appropriate simulation study that can efficiently test the performance of averaging
parameters over a large number of models corresponding to different hypotheses
about phylogenies or other evolutionary patterns.

12.3.3 Variation Within Species

One of the advantages of the PGLS approach is that it allows accounting for
within-species variation, which broadly includes true individual-to-individual or
population-to-population variation, and also other sources of variation in the
estimates of taxon trait values such as measurement error (see Ives et al. 2007;
Hansen and Bartoszek 2012; and Chap. 7). Given that these different sources of
error can be translated into different models, selecting among these may also be
performed by model selection. Does a model that considers within-species vari-
ation perform better than a model that neglects such variation? Such simple
questions can be developed further as by applying the general Eq. 12.2, in which
different error structures (e.g., phylogenetic errors and measurement errors, or
measurement error on one trait may correlate with measurement error on another
trait) can be combined in different ways.

For example, when considering intraspecific variation in an interspecific con-
text, we can evaluate at least four models and compare them based on their relative
fit (here, we are only focusing on the main logic; for details on how to take into
account intraspecific variation, see Chap. 7). First, as a null model, we can fit a
model that is defined as an ordinary least squares regression (i.e., with a covariance
matrix for the residuals based on a star phylogeny and measurement errors being
zero). Then, we can investigate a model that does account for phylogeny but not
for the uncertainty in the species-specific trait values (conditioned on the true
phylogeny, while measurement errors are assumed to be equal to zero), and also a
model that considers measurement error but ignores the phylogenetic structure
(unequal and nonzero values along the diagonal of the measurement error matrix,
and a phylogenetic covariance matrix representing a star phylogeny). Finally, we
wish to test a model that includes both error structures (the joint vari-
ance—covariance matrix reflecting the phylogeny and the known measurement
errors). To obtain parameter estimates and to make appropriate evolutionary
conclusions, the observer can rely on the model that offers the best fit to the data as
indicated by the corresponding AIC (but only if one model is unanimously sup-
ported over the others). Such a simple model selection strategy can be followed in
the OPM of Chap. 7. Note that for the appropriate calculation of AIC according to
Eq. 12.1 (and thus for the meaningful comparison of models), it is required that the
number of estimated parameters is determined, which may be difficult when
parameters in both the mean and variance components are estimated. This problem
can be avoided by a smart definition of models (e.g., by defining analog models
that estimate the same number of parameters even if these are known to be zero).
In any case, the approach requires further validation by simulation studies.
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Methods that account for within-species variation can also deal with a situation,
in which different sample sizes (n) are available for different species, implying that
data quality might be heterogeneous (i.e., larger errors in taxa with lower sampling
effort; see Chap. 7 for more details). For example, if within-species variances or
standard errors are unknown, one can fit a measurement error model by using
1/n as an approximation of within-species variance.

Another way to incorporate heterogeneous sampling effort across species into
the comparative analyses is to apply statistical weights in the model. A particular
issue arising in this case is that weighting can result in a large number of models
(with potentially different results). For example, by using the number of individ-
uals sampled per taxon as statistical weights in the analysis, we enforce weights
differing a lot between species that are already sampled with sufficient intensity
(e.g., the underlying sample size is 20 at least) but still differ in the background
research effort (e.g., 100 individuals are available for one species, while 1,000 for
another). However, if we log- or square-root-transform within-species sample sizes
and use these as weights, more emphasis will be given on differences between
lightly sampled species than on differences between heavily sampled species.
Continuing this logic, and applying the appropriate transformation, we can create a
full gradient that scales differences in within-species sample sizes along a con-
tinuum spanning from no differences to large differences between species with
different within-species sample sizes.

For illustrative purposes (Fig. 12.2, left panel), we have created such a gradient
of statistical weights by the combination of the original species-specific sample
sizes (n) and an emphasis parameter (the ‘weight of weights’) that we will label w;
o is simply an elevation factor that ranges from 1 to 1/100 and defines the
exponent of n. If w is 1, the original sample sizes are used as weights in the
analysis. If o is 1/2 = 0.5, the square-root-transformed values serve as weights,
and differences between small sample sizes become more emphasized than dif-
ferences between species with larger sample sizes. w = 1/c0 = 0 represents the
scenario in which all species are considered with equal weight (n° = 1), so the
model actually represents a model that does not take into account heterogeneity in
sampling effort. Other transformations on sample sizes based on different scaling
factors that create a gradient can also be envisaged.

Using the parameter w, we provide an example for the study of brain size
evolution based on the allometric relationship with body size (Fig. 12.2 right
panel, the associated R code is provided in the OPM). We have created a set of
phylogenetic models that also included statistical weights in the form of the w
exponent of within-species sample sizes. The scaling factor w varied from O to 1.
We challenged these models with exactly the same data using ML; thus, model fit
statistics (e.g., AIC) are comparable. We found that when accounting for phylo-
genetic relationships, the @ = 0 scenario provides by far the best fit, implying that
weighting species based on sample size is not important. This finding is not
surprising, given that both traits, brain size and body size, have very high
repeatability (R > 0.8). Thus, relatively few individuals provide reliable infor-
mation on the species-specific trait values. Giving different weights to different
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Fig. 12.2 The effect of using different transformations of the number of individuals as statistical
weights. The left panel shows how differences between species are scaled when the underlying
within-species sample sizes are transformed by exponentiating them with the exponent . w
varied between 1 (untransformed sample sizes maximally emphasizing differences in data quality
between species) and O (all species have the same weight; thus, data quality is considered to be
homogeneous). The right panel shows the maximized log-likelihood (black solid line) and the
estimated slope parameters of models (red dashed line) for the brain size/body size evolution that
implement weights that are differently scaled by @

species based on the underlying sample sizes would actually be misleading; the use
of different w values leads to qualitatively different parameter estimates for the
slope of interest (Fig. 12.2, right panel). This indicates that the results and con-
clusions are highly sensitive to how differences in sampling effort are treated in the
analysis. Note that the above exercise only makes sense if (1) there is a consid-
erable variation in within-species sample size and (2) if there is no phylogenetic
signal in sample sizes. These assumptions require some diagnostics prior to the
core phylogenetic analysis (see an example in Garamszegi and Mgller 2012).

Garamszegi and Mgller (2007) relied on a similar approach in a study of the
ecological determinants of the prevalence of the low pathogenic subtypes of avian
influenza in a phylogenetic comparative context. It was evident that there was a
vast variance in sampling effort across species, as within-species sample size
varied between 107 and 15,657. Therefore, when assessing the importance of the
considered predictors, it seemed unavoidable to simultaneously account for
common ancestry and heterogeneity in data quality. The application of the strategy
of scaling the weight factor yielded that, contrary to the above example, the
highest ML was achieved by a certain combination of the weight and phylogenetic
scaling parameters. That finding was probably driven by the relatively modest
repeatability of the focal trait (prevalence of avian influenza), suggesting that, due
to different sample sizes, data quality truly differed among species.

We advocate that the importance of a correction for sample size differences
between species is an empirical issue that can vary from data to data, which could
(and should) be evaluated. We provided a strategy by which the optimal scaling of
weight factors can be determined. In these examples, an unambiguous support could
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be obtained for a single parameter combination. However, we can imagine situa-
tions, in which more than one model offers relatively good fit to the data, in which
case inference would be better made based on model averaging (corresponding
codes are given in the OPM) instead of focusing on a single parameter combination.
Furthermore, the evaluation of the sample size scaling factor (as well as the
assessment of within-species variance) can be combined with the evaluation of
alternative phylogenetic hypotheses, as the IT-based framework offers a potential
for the exploration of a multidimensional parameter space. Accordingly, each
scaling factor can be incorporated into various models considering different phy-
logenies (or each phylogenetic tree can be evaluated along a range of scaling fac-
tors), and the model selection or model-averaging routines may be used for drawing
inference from the resulting large number of models. Again, the performance of
these methods necessitates further investigations by simulation approaches.

12.3.4 Dealing with Models of Evolution

12.3.4.1 Comparison of Models for Different Evolutionary Processes

Several phylogenetic comparative methods (e.g., phylogenetic autocorrelation,
independent contrasts, and PGLS) assume that the model of trait evolution can be
described by a Brownian motion (BM) random-walk process. However, this
assumption might be violated in certain cases, and other models might need to be
considered. For example, a model based on the Ornstein-Uhlenbeck (OU) process
is another choice that takes into account stabilizing selection toward a single or
multiple adaptive optima (Butler and King 2004; Hansen 1997; see also discussion
in Chaps. 14 and 15). Other model variants of the BM or OU models, such as the
model for accelerating/decelerating evolution (AC/DC, Blomberg et al. 2003) or
the model for a single stationary peak (SSP, Harmon et al. 2010), can also be
envisaged.

Given that we usually do not have prior information about the ‘true’ model of
evolution, alternative hypotheses about how traits evolved could be considered in
statistical modeling. If the considered evolutionary models are mathematically
tractable (there are cases when they are not! see Kutsukake and Innan 2013), they
can be translated into statistical models suitable for a model selection framework.
Accordingly, each model can be fitted to the data, and once finding the one that
offers the highest explanatory power, it can be used for making evolutionary
inferences. This does not only control for phylogenetic relationships, but knowing
which is the most likely evolutionary model can give insight about the strength,
direction, and history of evolution acting on different taxa. Importantly, when
using a model selection strategy in this context, the observer aims at identifying
the single best model that accounts for the mode of evolution; thus, model aver-
aging may not make sense. Therefore, for making robust conclusions, we need to
obtain results in which models are well separated based on their AIC in a way that
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one model reveals overwhelming support as compared to the others. Alternatively,
one could use model averaging to estimate regression parameters (and also to
estimate the parameters of the evolutionary model if parameters of different
models are analogous), thus accounting for the uncertainty in the assessment of the
underlying evolutionary process.

To demonstrate the use of model selection to choose among different evolu-
tionary models, we provide an example from Butler and King (2004), but other
illustrative analyses are also available in the literature (Collar et al. 2009, 2011;
Harmon et al. 2010; Hunt 2006; Lajeunesse 2009; Scales et al. 2009). Butler and
King (2004) re-examined character displacement in Anolis lizards on the Lesser
Antilles, where lizards live either in sympatry or in allopatry. Where two species
coexist, these differ substantially in size, while on islands that are inhabited by
only one species, lizards are of intermediate size. Therefore, one can hypothesize
that body size differences on sympatric islands result from character displacement
(i.e., when two intermediate-sized species came into contact with one another
when colonizing an island, they subsequently diverged into a different direction).
This hypothesis can be evaluated using alternative models of body size evolution
that differ in the degree of how they incorporate processes due to directional
selection and character displacement. The authors, therefore, evaluated five dif-
ferent models: (1) BM; (2) an OU process with a single optimum; (3) an OU
process with three optima corresponding to large, intermediate, and small body
size; (4) another OU model that includes an additional parameter to the three-
optima model to deal with the adaptive regimes occurring on the internal branches
as an estimable ancestral state; and (5) a model implementing a linear parsimony
reconstruction of the colonization events (arrival history of species on the islands).
Only the last model assumes character displacement. These models were com-
pared by different methods including AIC, a Bayesian (Schwarz’s) information
criterion (SIC), and likelihood ratio tests that unanimously revealed that the best-
fitting model was the OU model with the reconstructed colonization events
(Fig. 12.3). Altogether, the results support the hypothesis that character dis-
placement had an effect on the evolution of body size in Anolis lizards that col-
onized the Lesser Antilles.

12.3.4.2 Parameterization of Models

Another way to cope with the mode of evolution and to improve the fit of any
model can be achieved by the appropriate setting of parameters that describe the
fine details of the evolutionary process. For example, BM models can be adjusted
using the parameters x, J, or A that apply different branch-length transformations
on the phylogeny (e.g., k stretches or compresses phylogenetic branch lengths and
thus can be used to model trait evolution along a gradient from punctuational to
gradual evolution, while ¢ scales overall path lengths in the phylogeny and thus
can be used to characterize the tempo of evolution) or that assess the contribution
of the phylogeny (1 weakens or strengthens the phylogenetic signal in the data)
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Fig. 12.3 Graphical representation of five evolutionary models considered for the evolution of
body size in Anolis lizards inhabiting the islands of Lesser Antilles. BM Brownian model; UO(1)
Ornstein-Uhlenbeck process with a single optimum; OU(3), OU(4) Ornstein-Uhlenbeck process
with three or four optima, respectively i.g., Ornstein-Uhlenbeck process with four optima, one of
which is an ancestral state; OU(LP) Ornstein-Uhlenbeck process with implementing a linear
parsimony reconstruction of the colonization events, which thus considers character displace-
ment. The table shows the model fit statistics of different models.: deviance, Akaike’s
information criterion (see Eq. 12.1), and likelihood ratio test comparing the given model with the
BM model (LR and the associated P values). Modified from Butler and King (2004) with the
permission of the authors and University of Chicago Press

(Pagel 1999). Furthermore, the importance of the rates of evolutionary change in
character states can also be assessed via estimation of the corresponding parameter
(Collar et al. 2009; O’Meara et al. 2006; Thomas et al. 2006). Finally, UO models
also operate with particular parameters (such as o for the strength of selection and
0 for the optimum) that can take different values (Butler and King 2004; Hansen
1997, see also discussion in Chaps. 14 and 15).

The parameterization of models is a task that requires the investigator to choose
among alternative models with different parameter settings, which is typically a
model selection problem. This task is usually addressed with likelihood ratio tests,
in which a null model (e.g., with a parameter set to be zero) is contrasted with an
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alternative model (e.g., with a parameter set to a nonzero value). If the test turns
out significant, the alternative model is accepted and used for further analyses
(e.g., tests for correlations between traits) and for making evolutionary implica-
tions. Another strategy is to evaluate the ML surface of the parameter space and
then set the parameter to the value where it reveals the maximum likelihood (i.e.,
the strategy that most PGLS methods apply). Furthermore, AIC-based informa-
tion-theoretic approaches can be used to obtain the parameter combinations that
offer the best fit to the data.”

However, such a best model approach is not always straightforward. Parameter
states can span a continuous scale, and it is possible that a broad range of
parameter values are similarly likely. For example, the optimal phylogenetic
scaling parameter A is usually estimated using maximum likelihood. This esti-
mation might be robust if the peak of the likelihood surface is well defined (i.e.,
few parameter states in a narrow range have a very high likelihood, while the
remaining spectrum falls into a small likelihood region, Fig. 12.4, upper panels).
Our experience, however, is that the likelihood surfaces are rather flat and vary
considerably if single species are added or removed from the analysis (especially
at modest interspecific sample sizes, Freckleton et al. 2002). This means that a
broad range of parameter values describe the data similarly well (Fig. 12.4, lower
panels), thus arbitrarily choosing a single parameter value on a flattish surface for
further analysis may be deceiving.

We suggest that such uncertainty in parameter estimation can easily be incor-
porated using model averaging. Applying the philosophy that we followed for
dealing with multiple trees or scenarios for the correction for heterogeneous data
quality, we can also estimate the parameters of interest (e.g., ancestral state, slope,
or correlation between two traits) at a wide range of the settings of the evolu-
tionary parameters. Given that IT-based approaches typically compare sets of
discrete models, we need to create a large number of categories for the continuous
parameter (e.g., by defining a finite number, such as 100 or 1,000, bins for 4 in
increasing order between the interval of 0-1) that can be used to condition dif-
ferent models. Then, inference across this large number of models based on their
relative fit to the data can be made, and given that intermediate states between the
large number of categories are meaningful, interpretations can be extended to a
continuous scale. Therefore, evolutionary conclusions can be formulated based on
the parameter estimates that are averaged across models receiving different levels
of support instead of obtaining them from a single model. In theory, 4 can be
model averaged as well, but when the maximum likelihood surface is flat (meaning
that many models with different As will have similar AIC), deriving a single mean
estimate may be misleading. In such a situation, only estimates together with their
model-averaged standard errors (or confidence intervals) make sense.

In the OPM, we show for 4 how this model averaging works in practice. We
also provide examples for the case when the exercise for model parameters is

* As long as the number of parameters is equal, AIC and ML reveal the same.
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Fig. 12.4 Typical shapes of maximum likelihood surfaces of the phylogenetic scaling factor
lambda (). The upper figures show two examples, in which the surface has a distinct peak and
only a narrow range of parameter values are likely. In contrast, the bottom graphs depict two
cases in which the likelihood surface is rather flat, thus incurring a considerable uncertainty when
choosing a single value. Vertical red lines give the values at the maximum likelihood. For the
illustrative purposes, it is assumed that y-axes have the same scale

combined with multimodel inference for statistical weights (Fig. 12.5). We keep
on emphasizing that our suggestions merely stand on theoretical grounds; the
performance of model averaging in dealing with the uncertainty of model
parameterizations awaits future tests (based on both empirical and simulated data).
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Fig. 12.5 Likelihood surface when the phylogenetic signal (lambda, 4) and the data heteroge-
neity (omega, ) parameters are estimated in a set of models using different parameter
combinations for the brain size/body size evolution in primates (data are shown in Fig. 12.1). The
surface shows the log-likelihoods of a large number of fitted models that differ in their 4 and @
parameters. These parameters are allowed to vary between 0 and 1 (with steps of 0.01) in all
possible combinations. For a definition of w, see Fig. 12.2

12.3.5 The Performance of Different Phylogenetic
Comparative Methods

The logic of model selection can also be applied to assess whether any particular
comparative method is more appropriate than others. For example, in a meta-
analysis, Jhwueng (2013) estimated the goodness of fit of four phylogenetic
comparative approaches. He collected more than a hundred comparative datasets
from the published literature, to which he applied the following methods to esti-
mate the phylogenetic correlation between two traits: the non-phylogenetic model
(i.e., treating the raw species data as being independent), the independent contrasts
method (Felsenstein 1985), the autocorrelation method (Cheverud et al. 1985), the
PGLS method incorporating the Ornstein-Uhlenbeck process (Martins and Hansen
1997), and the phylogenetic mixed model (Hadfield and Nakagawa 2010; Lynch
1991). Model fits obtained for different approaches were compared based on AIC,
which revealed that the non-phylogenetic model and the independent contrasts
model offered the best fit. However, the parameter estimates for the phylogenetic
correlation were quite similar across models, indicating that the studied compar-
ative methods were generally robust to describe evolutionary patterns present in
interspecific data.
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12.4 Further Applications

So far, we mostly focused on the potential that the IT framework provides in
association with the PGLS framework, when models are fitted with ML. However,
multimodel inference also makes sense in a broader context, and related issues are
known to exist in a range of other phylogenetic situations. We provide some
examples below (without the intention of being exhaustive), but further applica-
tions can also be envisaged. This short list may illustrate that the benefits of
multimodel inference can be efficiently exploited in relation to interspecific data.

A typical model selection problem is present in phylogenetics, when the interest
is to find the best model that describes patterns of evolution for a given nucleotide
or amino acid sequence. As briefly discussed in Chap. 2 (but see in-depth dis-
cussion in Alfaro and Huelsenbeck 2006; Arima and Tardella 2012; Posada and
Buckley 2004; Ripplinger and Sullivan 2008), several models have been devel-
oped to deal with different substitution rates and base frequencies that ultimately
influence the evolutionary outcome. The reliance on different models for phylo-
genetic reconstructions can result in phylogenetic trees that vary in their branching
pattern and the underlying stochastic processes of nucleotide sequence changes
that generate branch lengths. Given that a priori information about the appropri-
ateness of different evolutionary models is generally lacking, those who wish to
establish a phylogenetic hypothesis from molecular sequences are often confronted
with a model selection problem. Accordingly, several evolutionary models need to
be fitted to the sequence data, and the one that offers the best fit (e.g., as revealed
by likelihood ratio test or an AIC-based comparison or Bayesian methods) should
be used for further inferences about the phylogenetic relationships.

An intriguing example for the application of IT approaches in the phylogenetic
context is the use of likelihood methods to detect temporal shifts in diversification
rates. By fitting a set of rate-constant and rate-variable birth—death models to
simulated phylogenetic data, Rabosky (2006) investigated which rate parameter
combination (e.g., rate constant or rate varying over time) results in the model with
the lowest AIC. The results suggested that selecting the best model in this way
causes inflated Type I error, but when correcting for such error rates, the birth—
death likelihood approach performed convincingly.

Eklof et al. (2012) applied IT methods to understand the role of evolutionary
history for shaping ecological interaction networks. The authors approached the
effect of phylogeny by partitioning species into taxonomic units (e.g., from
kingdom to genus) and then by investigating which partitioning best explained the
species’ interactions. This comparison was based on likelihood functions that
described the probability that the considered partition structure reproduces the real
data obtained for nine published food webs. Furthermore, they also used marginal
likelihoods (i.e., Bayes factors) to accomplish model selection across taxonomic
ranks. The major finding of the study was that models considering taxonomic
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partitions (i.e., phylogenetic relationships) offered better fit to the data, and food
webs are best explained by higher taxonomic units (kingdom to class). These
results show that evolutionary history is important for understanding how com-
munity structures are assembled in nature.

Depraz et al. (2008) evaluated competing hypotheses about the postglacial
recolonization history of the hairy land snail Trochulus villosus by using AIC-
based model selection. They compared four refugia hypotheses (two refugia, three
refugia, alpine refugia, and east—west refugia models) that could account for the
phylogeographic history of 52 populations. The four hypotheses were translated
into migration matrices, with maximum likelihood estimates of migration rates.
These models were challenged with the data, and Akaike weights were used to
make judgments about relative model support. This exercise revealed that the
model considering the two refugia hypothesis overwhelmingly offered the best fit.

In a phylogenetic comparative study based on ancestral state reconstruction,
Goldberg and Igi¢ (2008) investigated ‘Dollo’s law’ which states that complex
traits cannot re-evolve in the same manner after loss. When using simulated data
and an NHST approach (likelihood ratio tests), they found that in most of the cases
the true hypothesis about the irreversibility of characters was falsely rejected.
However, when using appropriate model selection (based on AIC-based IT
methods), the false rejection rate of ‘Dollo’s law’ was reduced.

Alfaro et al. (2009) developed an algorithm they called MEDUSA, which is an
AIC-based stepwise approach that can detect multiple shifts in birth and death rates
on an incompletely resolved phylogeny. This comparative method estimates rates of
speciation and extinction by integrating information about the timing of splits along
the backbone of a phylogenetic tree with known taxonomic richness. Diversification
analyses are carried out by first finding the maximum likelihood for the per-lineage
rates of speciation and extinction at a particular combination of phylogeny and
species richness and then comparing these models across different combinations.

Further examples, e.g., for detecting convergent evolution based on stepwise
AIC (Ingram and Mabhler 2013) and for revealing phylogenetic paths based on the
C-statistic Information Criterion (von Hardenberg and Gonzalez-Voyer 2013) can
be found in Chaps. 18 and 8, respectively.

12.5 Concluding Remarks

What we have proposed here are several approaches to exploit the strengths of IT-
based inference in the context of phylogenetic comparative methods. Using IT
methods such as model selection in combination with phylogenetic comparative
methods seems to offer the potential to elegantly solve problems which otherwise
would be hard to tackle. Other IT methods such as model averaging allow dealing
with phylogenetic uncertainty by explicitly incorporating it into the analysis and
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exploring to what extend it compromises certainty about the results. Taken
together, IT-based methods offer a great potential since they relieve researchers
from the need of making arbitrary and/or poorly grounded decisions in favor of
one or the other model. Instead, they allow dealing easily with such uncertainties
or, at least, allow an assessment of their magnitude (among the set of potential
models). Uncertainty is at the heart of our understanding about nature; thus, sta-
tistical methods are needed that appreciate this attribute instead of neglecting it.

We need to stress, though, that our propositions are based on theoretical
grounds and need to be tested before they can be trusted. Particularly, simulation
studies (e.g., along the design in Box 12.1) seem suitable for this purpose since
they allow to investigate to what extend our propositions are able to reconstruct
‘truth’ which otherwise (i.e., in the case of using empirical data) is simply
unknown. Simulation studies are warranted because the use of AIC (and other IT
metrics) to non-nested models (which was largely the case here) is somewhat
controversial (Schmidt and Makalic 2011). Another cautionary remark is that we
refrained ourselves to suggest that only the IT-based model selection can be used
to address the problems we raised. We envisage this discussion to serve as an
initiative for comparative studies to consider the suggested methods as additions to
the already existing toolbox, which yet await further exploitation.

Since the philosophy of IT-based inference is rather different from that of the
classical NHST approach and since the two approaches are quite frequently mixed
in an inappropriate way (e.g., selecting the best model using AIC and then testing
it using NHST), we feel that some warnings on the use of the IT approach might be
useful (particularly for those who were trained in NHST): IT-based inference does
not reveal something like a ‘significance,” and the two approaches must not be
combined (Burnham and Anderson 2002; Mundry 2011). In the context of our
propositions, this means that at least part of them naturally preclude the use of
significance tests. This is particularly the case when sets of models with different
combinations of predictors and/or sets of different phylogenetic trees are investi-
gated. The end result of such an exercise is a number of AIC values associated
with a set of models. Selecting the best model using AIC and then testing its
significance is inappropriate. Rather, one could model average the estimates and
their standard errors (but not the P values!) or also the fitted values and explore to
what extend these vary across the different trees. Furthermore, one could use
Akaike weights to infer about the relative importance of the different predictors.
However, some of our proposed approaches might not necessarily and completely
rule out the use of classical NHST. In fact, we do not argue against using NHST,
which we regard as a scientifically sound approach if used and interpreted cor-
rectly. What we recommend is to not combine the use of significance tests with
any of the approaches we suggested and draw inference solely on the basis of IT
methods (e.g., Akaike weights or evidence ratios).
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