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abstract: We present a statistical approach—a custom-built hid-
denMarkovmodel (HMM)—that is broadly applicable to the analysis
of temporally clustered display events, as found in many animals, in-
cluding birds, orthopterans, and anurans. This HMM can simulta-
neously estimate both the expected lengths of each animal’s display
bouts and their within-bout display rates. We highlight the HMM’s
ability to estimate changes in animals’ display effort over time and
across different social contexts, using data from male greater sage
grouse (Centrocercus urophasianus). Male display effort was modeled
across three sites in two experimental treatments (robotic female sim-
ulating interested or uninterested behavior) and in the presence or ab-
sence of live females. Across contexts, we show that sage grouse males
primarily adjust their bout lengths rather than their within-bout dis-
play rates. Males’ responses to female behavior were correlated with
male mating success: males with more matings showed high display
persistence regardless of female behavior, while males with fewer mat-
ings tended to invest selectively in females that were already showing
interest in mating. Additionally, males with higher mating success re-
sponded more to the presence of a female than males with fewer
matings did. We conclude with suggestions for adapting our HMM
approach for use in other animal systems.

Keywords: hidden Markov model, display bouts, display rate, mate
choice, courtship tactics, greater sage grouse.

Introduction

A diverse array of animals repeat displays in bouts across
different contexts of animal communication, such as during
contests, parent-offspring exchanges, or courtship interac-
tions. Here, we define a display bout as a cluster of repeated
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display events (e.g., visual and/or auditory signals of the
same type; Martin and Bateson 2007). Bout-structured dis-
play effort consists of at least two components. Setting aside
variation among individual display events (e.g., variation in
signal magnitude or length), an animal could adjust either
(1) their display persistence, by changing the consecutive
number of displays contained in each bout, or (2) their
within-bout display rate, by adjusting the relative lengths
of the intervals of time separating each display event. In
many cases, such adjustments in display effort can increase
fitness, as whenmales that display for longer durations or at
higher rates are preferred by females (Fiske et al. 1998; Mu-
rai and Backwell 2006; Delaney et al. 2007; Byers et al. 2010).
However, most males cannot display at their peak levels in-
definitely; these males may need to tactically adjust their dis-
play bout behavior across different conditions (Patricelli et al.
2016). Males’ display tactics may depend on their underlying
state (e.g., energetic reserves), environmental context (e.g.,
predation risk), or social context (e.g., available partners).
To answer broader questions about animals’ display efficacy
or costs across different conditions, behavioral ecologists
therefore need to be able to characterize how animals’ dis-
play bout behavior changes over time.
Given that bout-structured display effort is composed of

at least two components (persistence and within-bout rate),
behavioral ecologists would benefit from using statistical
models that characterize both components. However, anal-
yses that ignore bout structure are still common (e.g., anal-
yses that count the total number of display events or that
average the lengths of the intervals separating displays; Pa-
tricelli and Krakauer 2010; Milner et al. 2011). These “bout-
agnostic” analyses collapse each animal’s multidimensional
display effort to a single metric, potentially discarding im-
portant information (Perry et al. 2017a). Another common
approach is to classify the intervals between display events
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2 The American Naturalist
relative to a “bout criterion interval” (BCI). In this ap-
proach, intervals whose length exceeds the BCI are classi-
fied as between-bout breaks (Sibly et al. 1990; Martin and
Bateson 2007). Preprocessing raw interval data in this way
has several drawbacks, however. For example, observers using
sufficiently different BCIs could classify bouts for the same
behavioral sequence differently and thus disagree about an
animal’s display characteristics (e.g., an animal’s number of
bouts, mean bout durations, or mean within-bout display
rates).Moreover, use of a constant BCI value precludes biol-
ogists from investigating how the intervals separating bouts
of display activity tend to vary in length across different in-
dividuals, in different contexts, or across timescales.

To address these shortcomings, we present a statistical
approach—a custom-built hidden Markov model—that will
be broadly useful to behavioral ecologists analyzing tempo-
rally clustered display events. HiddenMarkovmodels (HMMs)
are a statistical machine-learning technique developed in
the late 1960s and early 1970s to describe time series data
(as reviewed in Rabiner 1989; Seymore et al. 1999). In the
animal behavior field, these models are generally used to
predict animal movement and foraging patterns (e.g., Mac-
Donald and Raubenheimer 1995; Zucchini et al. 2008; Pat-
terson et al. 2009). The HMM that we present has been tai-
lored to estimate the probability that a given interval between
display events belongs to one of two bout-related states: ei-
ther an active bout of display or a longer break between
bouts. OurHMMsolves the problem of bout-agnosticmod-
els by explicitly accounting for bout structure and also solves
the problem of a BCI-based approach by flexibly classifying
interdisplay intervals (rather than using a global threshold).
This dynamic, state-based framework also gives us the ability
to examine whether an animal’s display behavior is changing
because of differences in display persistence or rate and to de-
scribe the covariance structure between these two compo-
nents. We present this model, using empirical data from an
experimental study conducted in greater sage grouse (Centro-
cercus urophasianus) that examinemales’ display effort across
different social contexts.

Greater sage grouse (hereafter “sage grouse”) are an ideal
field system for studying display bout behavior. Sage grouse
males gather on leks (communal display grounds) during
the breeding season, where they can be readily observed dis-
playing for several hours eachmorning over several months
(Wiley 1973a; Gibson and Bradbury 1985). Sage grouse males’
displays, called struts, follow a stereotyped motor pattern
whose duration (approx. 2 s) has relatively little intra- or in-
termale variation (Wiley 1973a). As in many chorusing in-
sects, frogs, or other birds (Robbins 1998; Gerhardt and Hu-
ber 2002), the intervals between display events alternate
between quick bursts of display activity and longer between-
bout breaks. The overall quantity and rate of males’ displays
is positively correlated with their mating success, which is
This content downloaded from 194
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determined by female choice in this system (Hartzler 1972;
Wiley 1973a, 1973b; Gibson and Bradbury 1985; Vehren-
camp et al. 1989; Boyce 1990; Gibson et al. 1991; Spurrier
et al. 1991, 1994; Patricelli and Krakauer 2010). However,
most previous analyses have ignored the bout structure of
these displays, which limits our understanding of the rela-
tive importance of males’ display persistence versus rate. Thus
far, nomorphological or plumage traits measured inmale sage
grouse seem to correlate with male mating success (Gibson
and Bradbury 1985), although females in one study did avoid
males with experimentally applied hematomas on their air sacs
(Boyce 1990).
We apply our HMM (as well as a bout-agnostic model

and a BCI-based model) to a data set of interdisplay inter-
vals collected from sage grouse males. We quantified males’
display effort in the presence/absence of live females and
during two experimental treatments conducted with a bio-
mimetic female robot. This robotic female allowed us to ex-
amine how males adjust their behaviors in response to the
social context of courtship, using a controlled female stim-
ulus (see Patricelli and Krakauer 2010). Specifically, we used
a robotic female capable of mimicking “interested” (upright)
and “uninterested” (foraging) female behavior. Sage grouse
females generally assume an upright stationary posture be-
fore soliciting amating, whereas foraging females have a lower
probability of soliciting (Wiley 1973b; Perry et al. 2017b). As
these behaviors correlate with females’willingness to continue
an interaction (or to copulate), a male’s fitness may depend
on his display tactics (i.e., on how he adjusts his display per-
sistence and/or rate in response to his social context). We do
not yet know whether these female behaviors are adaptions
to elicit male responses (signals) or incidentally convey in-
formation (cues); we refer to the upright and foraging be-
haviors as “cues” hereafter.
We use our HMM to characterize how males’ display

bout behavior changes over time and across contexts, show-
casing how this state-based statistical model can be used to
determine how individual display components (persistence
and/or rate) change across different circumstances.We also
demonstrate how the individual-level varying (i.e., ran-
dom) effects in our HMM can reveal correlations between
display tactics and another variable of interest: mating suc-
cess. More specifically, we test whether males’ display tac-
tics in the presence/absence of females on the lek and in re-
sponse to interested/uninterested female cues can be used
to predict the number of matings that each male achieved.
Inmating systems where female choice is based onmales’

display performance, males that respond tactically to fe-
male cues may reduce their display costs and/or increase
their signal efficacy, leading to higher reproductive success
(Patricelli et al. 2016). Here, we consider two mutually ex-
clusive hypotheses regarding the relationship between males’
responses to the robotic females’ behavior and their mat-
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HMMs Reveal Males’ Display Tactics 3
ing success. Under the “differential-social-skills” hypothesis,
prospective mates prefer males that reserve longer and/or
more intense display bouts for females giving positive feed-
back (e.g., Patricelli et al. 2002, 2004; Rodríguez et al. 2012;
Sullivan-Beckers and Hebets 2011, 2014). This relationship
may arise, for example, whenmales that are more responsive
to female cues are less likely to startle prospective mates dur-
ing courtship (Patricelli et al. 2002). Alternatively, females—
regardless of their apparent interest inmating—might prefer
males that are capable of displaying at elevated levels for
an extended period, rather than males that are more respon-
sive to female behavior. In these systems, the males that are
most responsive to female cues may need to be more selec-
tive about how their effort is deployed, because they are un-
able to maintain elevated display levels across contexts (e.g.,
because of greater constraints caused by differences in their
genetics, body condition, or energetic reserves). Patricelli and
Krakauer (2010) refer to this kind of resource-dependent
variation as the “differential-constraints” hypothesis. Under
this hypothesis, males that are unable to maintain their dis-
play effort during interactions with “uninterested” females
are expected to have lowermating success on average. To ad-
dress these hypotheses using our HMM, we modeled males’
mating success as a function of their individual-level varying
slopes, which describe how each male responded to different
cues from the robotic female.

Our HMM constitutes a significant improvement over the
bout-agnostic model and the BCI-basedmodel. Specifically,
the HMM could estimate the effects of social and environ-
mental context on animals’ display effort better than either
of the simpler models. Moreover, the bout-agnostic model
struggled to explain the low display rates associated with
long between-bout breaks; its residuals indicated that this
model’s assumptions were strongly violated. Our state-based
model can be broadly applied to other study systems, since
many other vertebrate and invertebrate species display in bouts
(Mowles and Ord 2012).
Material and Field Methods

Lek Observations

Wemonitored three leks approximately 25 km southeast of
Hudson, in Fremont County, Wyoming. We collected be-
havioral data for 11 territory-holding males on the Monu-
ment lek (MNT), 12 males on the Chugwater lek (CHG),
and at least 28 unique males on the Cottontail lek (COT);
our analysis fromCOT also includes data from 45 cases where
a male could not be individually identified across different
days (see “Male ID” in app. A; apps. A, B are available on-
line). Observations were conducted daily fromMarch 13 to
May 4, 2012 (except for 2 days with poor weather), begin-
ning at first light and continuing until no birds remained on
This content downloaded from 194
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the lek. Males’ breeding activity and behavior were video-
recorded with one or two high-definition cameras recording
in 1080i (Sony HDR-HC1, Tokyo, and Canon Vixia HV40,
NewYork). Field assistants recorded this footage from blinds
located on an observation hill approximately 75–200m from
each lek. These videos were later cross-referenced with field
notes specifying individual males’ on-lek positions, reported
in relation to a grid of stakes arrayed at 10-m intervals
(Krakauer et al. 2009; Patricelli and Krakauer 2010). Individ-
ual males were identified through spotting scopes via unique
color band combinations and tail plumage patterns (Wiley
1973b). This combination of data sources enabled us to iden-
tify and track individual males on each video. One trained
observer per lek used these videos to record the position
and time of each strut event during each experimental trial.
This researchwas approved by theWyomingGame and Fish
Department (permit 405) and the University of California,
Davis, Animal Care and Use Committee (protocol 11662).
Robotic Female and Experimental Protocol

Following Patricelli and Krakauer (2010), we used a robotic
female to elicit male display behavior, ensuring that all males
received a controlled female stimulus. In this study, we used
a second-generation robot that can move freely across the
lek on four independently rotating wheels and can pivot to
face courting males (see “Specifications for Robotic Female”
in app. A). The robot can also tilt forward andmove its neck
to simulate pecking at the ground or rotate the head from
side to side to simulate looking around (see videos 1 and
2, available online). We controlled all robotic movements
with radio signals from a blind positioned on the edge of
the lek. The robot’s electronic components were concealed
beneath a composite of real skins gathered frommultiple fe-
male sage grouse (casualties collected by local wildlife man-
agers). As Patricelli and Krakauer (2010) found with the
first-generation robot, we found that males responded to our
second-generation robot in a similar way as they would to a
typical real female. Specifically, individual males’ estimated
tendencies to continue a display bout (i.e., their display ef-
fort) with the robot and with real females are strongly related
(R2 p 0:72; N p 96 males; Forbey et al. 2017).
We conducted all robot experiments in the morning be-

tween 0630 and 0820 hours fromApril 7 toMay 1, 2012.We
performed two robot treatments, simulating (1) the posture
and head movements of an upright female, to mimic “inter-
ested” behavior, and (2) the posture andmovements of a for-
aging female, to mimic “uninterested” behavior (fig. 1; vid-
eos 1 and 2, respectively). Females looking back and forth
from an upright body position are more likely to solicit cop-
ulations later in the same lek visit, when compared to fem-
ales pecking at the ground (Perry et al. 2017b; see alsoWiley
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1973b). We performed a total of 10 experimental trials across
the three leks; each lek experienced both experimental treat-
ments. We included lek ID as a fixed effect in our subsequent
analyses to account for possible between-lek differences as
well as potential treatment-order effects: MNT and CHG (the
two smaller leks) received the “interested” treatment first,
whereas COT experienced the “uninterested” treatment first.
We waited at least 4 days before performing a different treat-
ment on the same lek.

Each robot treatment was preceded by a 180-s pretrial
period. Because males will spontaneously strut even when
no females are present (Wiley 1973a), display effort during
this period enabled us to measure baseline display levels for
each male in our analyses. We initiated the pretrial period
and performed all treatments when no real females were
within 50 m of the lek, to simplify the social environment
during experimental trials (Patricelli and Krakauer 2010).
After each pretrial, we used small portable speakers (Auvio
Universal Portable Speaker System) to play vocalizations
typically associated with the arrival of a female grouse on
the lek (Hartzler 1972; Patricelli and Krakauer 2010). Next,
the robot emerged from an observation blind on the edge
of the lek andmoved to a target locationbetween twoor three
males’ territories, stopping approximately 5 m from these
This content downloaded from 194
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focal males (mean distance to nearest male: 4.9 m; standard
deviation [SD]: 3.5 m). We selected target locations ran-
domly with respect tomale mating success, and we included
all males on the lek (up to 55 m away) in our final analyses,
regardless of whether they were part of the focal group. At
each target location, the robot simulated behaviors associ-
ated with either the “interested” or the “uninterested” treat-
ment for 180 s before moving to a new target location (at
least 4 m away) for another 180-s sample. This movement
pattern is similar to the way that real females move between
males’ territories on the lek (Gibson 1996). We kept the ex-
perimental treatment consistent between consecutive sam-
ples to avoid within-day treatment-order effects. The robot
spent an average of 188 s (SD p 146 s; minimum  ½min� p
49 s; maximum  ½max� p 631 s) moving between locations
on the lek. The robot visited up to five target locations per
trial (mean p 2:7; SD p 1:4; min p 1) to reach all avail-
able groupings of males on the lek, which allowed us to col-
lect samples of eachmale’s display effort at various distances
from the robot (mean male-to-robot distance p 17:1 m;
SD p 11:0 m; min p 1:4 m; max p 54:6 m). Across all
10 experimental trials, each identifiedmalewas observedwith
the robot approximately five times, on average (SD p 2;
min p 1; max p 10).
Figure 1: Comparison of the upright/interested position (A, B) and the foraging/uninterested position (C, D) in both the robotic female (A
and C) and a real female sage grouse (B and D). See videos A1 and A2, available online.
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HMMs Reveal Males’ Display Tactics 5
Natural Courtship Data

We also sampledmales’ display behavior during their inter-
actions with real females. We chose time periods where
there was only a single real female on the lek, analogous to
our robot trials, and recorded data formales up to 50m away
from that female. We included 18 of these 180-s observation
periods in our data set (8 on MNT, 6 on CHG, and 4 on
COT). These observations overlapped temporally with our
experiments (10 nonconsecutive days between April 5 and
May 3, between 0539 and 0718 hours). We used these data
to compare males’ display effort during interactions with ro-
botic versus real females (Forbey et al. 2017) and to charac-
terize how males’ display effort changed as the breeding sea-
son progressed.
Mating Success

We assessed eachmale’s mating success by summing his to-
tal number of copulations during the 2012 breeding season
(e.g., Gibson et al. 1991; Patricelli and Krakauer 2010). We
did not observe any repeated copulations between the same
male and female on the same morning. In sage grouse, male
mating success provides an effective, if imperfect, proxy for
actual male reproductive success (Semple et al. 2001; Bird
et al. 2013). Although mating events observed in the field
may not provide an exhaustive assessment of males’ overall
reproductive fitness (e.g., by potentially undersamplingmul-
tiple paternity events ormatings occurring off lek or at night;
Bird et al. 2013), they provide us with a direct link between
male display performance and female choice during the ob-
servation period.
Quantifying Male Display Effort

Two priormethods used to quantify the strut displays of male
sage grouse are (1) counting the number of struts per minute
(Hartzler 1972; Wiley 1973b; Gibson and Bradbury 1985;
Spurrier et al. 1991, 1994) and (2) calculating the arithmetic
or harmonic mean interstrut interval length for a set obser-
vation window (Wiley 1973a; Gibson and Bradbury 1985;
Gibson et al. 1991; Patricelli and Krakauer 2010). Both of
these methods collapse the distribution of interstrut inter-
vals to a single number before analysis. Instead, we decided
to adopt a modeling approach that uses information from
each interstrut interval (i.e., the period of time between the
termination of one strut and the beginning of the next; here-
after “interval”). Our data set included 8,315 fully and par-
tially observed intervals (fig. 2). To calculate these intervals,
we treated each strut display as a fixed-length event (lasting
2 s), since struts’ durations have little intra- or intermale var-
iation (Wiley 1973a). In the “Discussion,”we suggest possible
extensions to our HMM (described below) that would relax
This content downloaded from 194
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this assumption for applications in other signaling systems
where the individual display events are more variable.
Statistical Methods

Statistical Model

We used a hidden Markov model (HMM) to infer males’
courtship tactics from sequences of interdisplay intervals.
Figure 2B shows the distribution of these interval lengths:
a sharp peak of short intervals with an extended tail of lon-
ger intervals. Our HMM represents these two types of in-
tervals as different “hidden” states (Rabiner 1989; Seymore
et al. 1999), which correspond to different internal states for
a male grouse: each male is either in an active bout of dis-
play (producing short intervals) or resting between bouts
(which yields an extended interval). Each male’s internal
state is “hidden” in the sense that it cannot be directly mea-
sured andmust be inferred from the male’s behavior. In our
sage grouse example, a 120-s interval between struts clearly
corresponds to a break between more intense bouts of dis-
play, but additional context may be needed to classify a
male’s state during a 12-s interval.
In HMMs, each interval’s predicted state (and thus its

length) depends on the state assigned to the preceding in-
terval in the sequence. This nonindependence between con-
secutive intervals (i.e., temporal autocorrelation) allows the
model to accommodate biologically complex sequence data
(e.g., after a long interval, males may be more likely to tran-
sition to an active bout of display than to strut once and re-
turn to another between-bout break). OurHMMmust there-
fore estimate two sets of parameters: one controlling the
probability that a male grouse will transition from one hid-
den state to another (fig. 3A) and the other determining the
distribution of possible interval lengths that he can produce
in each state (fig. 3B).We used the gammadistribution to de-
scribe the interval lengths generated by each state (fig. 3B);
this distribution often describes lengths of time between events
(like the more common, but less flexible, exponential distri-
bution).
Our model defines a likelihood function (see “Joint Like-

lihoods for HMM and Mating Analysis” in app. A), which
can be used to infer how multiple factors affect males’ tran-
sition probabilities and their average interval lengths. We
included the following variables as fixed effects for both sets
of parameters: type of female stimulus (i.e., female absent,
real, or robotic); experimental treatment (i.e., robot inter-
ested or uninterested); male proximity to female stimulus;
date in breeding season; time since sunrise; and focal lek
(see “Predictor Variables Included in the HMM” in app. A).
We also included varying (i.e., random) intercepts to model
the variance structure arising from repeated measures col-
lected from the same individual, trial day, or sampling period
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(Gelman and Hill 2007; McElreath 2016). Like our fixed
effects, these intercepts influence both display parameters
(fig. 3). Each male, for example, has an intercept term spec-
ifying how much his display effort deviates from the typical
male response in each display process. Because males display
and interact with one another on leks, we could not measure
each individual’s display effort independently of othermales’
behavior. We were able to account for this nonindependence
among males, in part, by including varying intercepts for
each sampling window (e.g., for samples where many males
simultaneously increased/decreased their effort). Finally, we
used varying slopes to evaluate males’ individual-level re-
sponsiveness to different social contexts (i.e., to estimate
individual-level behavioral plasticity; see Dingemanse et al.
2010).
This content downloaded from 194
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We fit two candidate HMMs: a baseline model with no
treatment effect and another version with treatment. In the
baseline model, males could vary only in their responsive-
ness to an absent, real, or robotic female, while the alterna-
tive model also included males’ responsiveness to interested
and uninterested robot behavior. If males differ in their re-
sponsiveness to female behavior, then the predictive accu-
racy of the HMM with the treatment effect should be better
than that of the baseline model.
Censored Observations

Our sampling periods ended after 180 s, so we did not ob-
serve the beginning and/or ending of some intervals; these
partially observed intervals are called censored observa-
Figure 2: A, Hypothetical sampling window with raw interval data, where single display events (grouse silhouettes) separate both fully ob-
served, within-bout intervals (gray bars) and longer, between-bout breaks (black bar) as well as partially observed, censored intervals (bars
with dashes). B, Distribution of interstrut intervals observed across all sampling periods. The peak at 180 s represents specific censored in-
tervals where the time between struts spanned an entire sampling window. The dotted vertical line shows the harmonic mean interval length
at 6.7550.03 (bootstrapped SE) s (which describes only short interstrut intervals), while the dashed vertical line shows the arithmetic mean
at 11:3550:28 s (approx. 90% of the raw intervals are shorter than this value). Neither mean adequately represents longer interval lengths
that, although less frequent, occupy a greater proportion of a given sampling window.
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HMMs Reveal Males’ Display Tactics 7
tions (specifically, type I, right-censored observations; La-
gakos 1979; Klein and Moeschberger 2003). Although the
full durations of these censored intervals are unknown, we
do have a lower bound on their possible lengths (fig. 2A).
Proper handling of these partially observed intervals is crit-
ical for avoiding biased inference. For example, ignoring the
portion of each interval that occurred outside our observa-
tion windows would lead the model to underestimate the
average interval length, while discarding all partially ob-
served intervals would disproportionately affect individuals
with low display effort (i.e., nonresponse bias; Gelman and
Hill 2007, p. 531–533). Our hypotheses require accurately
characterizing both individuals with consistently low dis-
play effort and individuals that tactically reduce their effort
in certain social contexts. To avoid biased estimates for these
individuals, we used Bayesian imputation (see McElreath
2016, chap. 14) to represent our uncertainty about the range
of possible durations for partially observed intervals.
Mating Success Analysis

To determine how males’ display behavior relates to their
mating success, we used parameter estimates from our HMM
to predict the number of matings each male obtained, mod-
eled as a Poisson-distributed variable. This Poisson general-
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ized linear mixed model was fit simultaneously with our
HMM, giving us a joint posterior distribution (see “Joint
Likelihoods for HMMandMating Analysis” in app. A). Cal-
culating a joint posterior avoids many of the pitfalls asso-
ciated with inferences based on point estimates obtained
fromvarying effects (Hadfield et al. 2010), because the full un-
certainty of each parameter is propagated through themodel.
This technique allows male coefficients with greater support
to have a greater impact on the models’ posterior and allows
information to flow back from the mating model to inform
our estimates of individual differences in male display behav-
ior in the HMM (McElreath 2016, chap. 14). Both candidate
models for the mating analysis allowed mating success to
depend on all available male-specific intercepts and slopes
from the HMM (see “Joint Likelihoods for HMM andMating
Analysis” in app. A). Since one candidate HMM included
an additional predictor describing males’ responsiveness
to the robotic female’s behavior, the corresponding mating
model included this additional parameter as well.
Model Fitting and Evaluation

We implemented the joint posterior distribution for the
HMM and mating analysis in the Stan programming lan-
Figure 3: Conceptual diagram of the hidden Markov model (HMM), illustrating how combining the two sets of model parameters (v and m)
contributes to a more complete understanding of each male’s display effort. Here, we model male display behavior as a combination of active
(within-bout) and inactive (between-bout) states. A, Visual representation of the probability matrix (v) defining four possible state transitions
between short, within-bout (gray boxes) and longer, between-bout (black boxes) interdisplay intervals (where each grouse silhouette repre-
sents a single display event; in our two-state model, transitions 1 and 3 or 2 and 4 sum to 1). B, Two hypothetical gamma distributions,
showing the range of durations associated with short intervals (m1) and long intervals (m2).
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guage (Stan, ver. 2.6.0, and RStan, ver. 2.6.0; Stan Develop-
ment Team 2015a, 2015b), which uses an efficient Markov
chain Monte Carlo (MCMC) technique known as Hamilto-
nian Monte Carlo to collect samples from the posterior dis-
tribution of parameters (Monnahan et al. 2016). We calcu-
lated the HMM’s likelihood, using the forward algorithm
(Rabiner 1989), a recursive calculation that gives the prob-
ability of the observational sequence, by marginalizing (i.e.,
averaging) over all possible paths through the hidden states.
We also used the R programming language to organize our
raw data and analyze the model output (ver. 3.2.0; R Devel-
opment Core Team 2015). For each candidate model, we
generated a posterior distribution using two independent
chains of 6,000 iterations each, discarding the first 2,000
“warm-up” iterations of each chain (Carpenter et al. 2017).
The code and underlying data for each candidate model are
deposited in the Dryad Digital Repository: https://dx.doi
.org/10.5061/dryad.sn0c503 (Perry et al. 2019).

To evaluate our alternative hypotheses, we compared
candidate HMM and mating models with and without the
treatment effect. More specifically, we compared how well
the candidate HMMs predicted each 180-s display sequence
(N p 667) and how well the mating models predicted the
mating success of each identified male (N p 51). We esti-
mated each model’s predictive accuracy, using the Watanabe-
Akaike (or “widely applicable”) information criterion (WAIC;
Watanabe 2010; Gelman et al. 2014; Vehtari and Gelman
2014). The WAIC metric approximates each model’s out-of-
sample deviance, similar to the more familiar Akaike infor-
mation criterion metric. We calculated DWAIC values and
their standard errors to account for uncertainty in our esti-
mates (Vehtari and Gelman 2014). Finally, we also calculated
delta values for the deviance information criterion (DIC) to
confirm that both model selection criteria (i.e., WAIC and
DIC) produced the same qualitative results.
Additional Analyses of Males’ Display Effort

We fit two additional models to our interval data to com-
pare our HMM approach to simpler models of display ef-
fort. For the first model, we fit a linear mixed model to
the natural log of males’ harmonic mean interval lengths
(see “Likelihood for Linear Mixed Model Predicting Males’
Harmonic Mean Interval Lengths” in app. A for full de-
tails). We also calculated a bout criterion interval (BCI)—a
threshold value defining the minimum length of a between-
bout break—and used this BCI to classify each interval in
our data set. We then fit a generalized linear mixed model
that predicts the proportion of intervals in our data that were
shorter or longer than the BCI value (which is analogous to
the first set of parameters in our HMM predicting whether
a given interval is short or long; see “Likelihood for Gener-
alized Linear Mixed Model Using a ‘Bout Criterion Inter-
This content downloaded from 194
All use subject to University of Chicago Press Term
val’ ” in app. A). The code and underlying data for these
additional analyses are deposited in the Dryad Digital
Repository: https://dx.doi.org/10.5061/dryad.sn0c503 (Perry
et al. 2019). See also Perry et al. (2017a) for a quantitative
comparison of these models’ performance on simulated data
where display events are grouped in bouts.
Results

Below, we highlightmodel predictions for changes inmales’
display effort over time, their responses to different female
stimuli, and the relationship between male responsiveness
and mating success. Tables B1–B3 (tables B1–B8 are avail-
able online) summarize the model output, including mean
posterior values, standard errors, and effective sample sizes
for all parameters. Gelman and Rubin’s (1992) “potential
scale reduction factor” (R̂) did not detect any problems with
MCMC convergence (R̂ ! 1:01 for all parameters).
Predictions from the HMM

The first set of HMMparameters make up a 2#2 transition
matrix (fig. 3A) describing males’ movements through the
hidden states (e.g., beginning or ending a bout). Rather
than describing the entire transition matrix under multiple
treatments and conditions, we focus on the probability that
a typical male will continue a display bout that has already
begun (pcontinuing; fig. 3A.1; see “AverageMale Conditions” in
app. A). We focus on this value because it determines bout
length: the number of intervals per bout follows a geometric
distribution whose mean is 1=(12 pcontinuing), and the num-
ber of struts per bout is equal to 1 plus this value (fig. 4A).
In general, we found that males had greater variation in their
predicted bout lengths than in their predicted mean interval
durations (reported in seconds), as described below.
We found that pcontinuing declined during the portion of the

breeding season that we observed (i.e., after peakmating ac-
tivity; fig. 4A). For example, the average male in the un-
interested treatment continues his bout after 86.4% of his
strut events (standard error [SE] p 5:2%) on day 5 of our
observations (April 9), declining to 67.0% (SE p 14:3%)
by day 25 (April 29; see “Average Male Conditions” in
app. A). The intervals between struts also lengthened slightly
over the course of the breeding season (table B4), although
this had a much smaller effect on males’ total strut count.
We also found that female stimulus type and treatment

affected pcontinuing (fig. 4). For example, on day 25, a typical
male continues bouts after 67.0% of his struts if the robot
is uninterested. This increases by 9.8 percentage points
(pp; SE p 7:3), on average, to 76.8% when the robot is in-
terested and by a similar amount for a real female (11.9 pp;
SE p 8:0). Finally, with no female stimulus present, pcontinuing
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s and Conditions (http://www.journals.uchicago.edu/t-and-c).

https://dx.doi.org/10.5061/dryad.sn0c503
https://dx.doi.org/10.5061/dryad.sn0c503
https://dx.doi.org/10.5061/dryad.sn0c503


HMMs Reveal Males’ Display Tactics 9
is 15.0 pp lower (SE p 7:4). The full posterior estimates for
these differences, relative to the uninterested-robot treatment,
are displayed in figure 4B, 4C.

In contrast, we found that males’ within-bout interval
lengths were basically indistinguishable for the two robot
treatments (difference p 0:150:4 s; table B4). Compared
with the robot treatments, males’ interstrut intervals were
slightly shorter in the presence of a real female and slightly
longer when no female was present (table B4).

The value of pcontinuing also varies with male-to-female dis-
tance. For example, the average male in close courtship (5 m
This content downloaded from 194
All use subject to University of Chicago Press Term
from a female stimulus) will continue a bout 94.4% of the
time, while a more distant male (25 m away) tends to con-
tinue displaying 89.8% of the time. A 20-m change in male-
to-female distance can thus nearly double the probability
of ending a bout (e.g., from 5.6% to 10.2%). As with the type
of female stimulus, however, the effect of distance on inter-
val length within a given interval type (short vs. long) was
minimal (changing by less than 0.5% for a 20-m change
in male-to-female distance). Time-of-day effects showed a
pattern different from the effects discussed above: the model
was very uncertain about the sign and magnitude of an
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Figure 4: A, Mean posterior estimates for the probability that the average male will continue a bout of display with one real female (black
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effect on bout length (i.e., pcontinuing; table B1) but found that
the time between struts for a given interval type increased
by 9% (SE p 4%) for each hour after nautical dawn.
Mating Success

Male mating success was highly skewed in 2012: 35% of
identified males were never observed mating, while the most
successful individual mated 77 times (N p 51 identified
This content downloaded from 194
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males, 291 successful copulations; see fig. A1). In our mating
analysis, we modeled males’ mating success as a count vari-
able (color scale in fig. 5A, 5C). However, to facilitate the in-
terpretation of the results, we also show expected values for
all successfully mated versus unmated males (fig. 5B, 5D).
We observed several noteworthy relationships between males’
display behavior and their mating success. In the absence of
real or robotic female stimuli (i.e., during pretrial periods),
we found a negative relationship between pcontinuing and male
A. Individual responsiveness
to presence of robot

P(continuing bout)
 with empty lek

P
(c

on
tin

ui
ng

 b
ou

t)
 w

ith
 ro

bo
tic

 s
tim

ul
us

0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

B. Average responsiveness
to presence of robot

P
(c

on
tin

ui
ng

 b
ou

t)

Empty
lek

Robotic
stimulus

0.7

0.8

0.9

1.0

C. Individual responsiveness
to robot treatment

P(continuing bout)
 with uninterested robot

P
(c

on
tin

ui
ng

 b
ou

t)
 w

ith
 in

te
re

st
ed

 ro
bo

t

0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

D. Average responsiveness
to robot treatment

P
(c

on
tin

ui
ng

 b
ou

t)

Uninterested
robot

Interested
robot

0.7

0.8

0.9

1.0

Mated males
Unmated males

Number of matings

0 20 40 60 80

Figure 5: Males’ responsiveness to the social context of courtship, including the presence/absence of the robotic stimulus (A, B) and the two
robot treatments (C, D). The scatterplots (A, C) show individual males’ responsiveness (individual-level posterior means) and mating success
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mating success (fig. 5A, 5B). When comparing males’ re-
sponses to the robot treatments, we found that successful
males generally produced long bouts under both behavioral
treatments, whereas males with lower mating success were
more responsive to robot behavior, increasing their probabil-
ity of continuing a boutwhen the robotwas “interested” (fig. 5C,
5D). A visual inspection of figure 5C may suggest that some
highly successful males have posteriormeans below the 1∶1 line
(i.e., display effort biased toward the uninterested treatment);
however, all of thesemales except onehad95%credible intervals
spanning the line. Overall, our results indicate that unmated
males tend to be more responsive to female behaviors than
successfully mating males, which is consistent with the pre-
dictions of the differential-constraints hypothesis.
Evaluating the HMM’s Treatment Effect

The WAIC weights and rankings supported the inclusion
of the experimental treatment as a factor in our candidate
HMMs (DWAIC against model without treatment1 5.6; ta-
ble B5). However, the standard error of the WAIC differ-
ence was relatively large at the level of a 180-s observation
window (SE p 11:72; table B5). This reflects the fact that
most of the variation in the data arises not from treatment
but rather from individual male variation and other factors
(table B1). Thus, we conclude both that treatment affected
the display effort of many males and that there are other
factors with larger effects on display effort. We also found
support for the inclusion of a treatment effect in the model
predicting male mating success (DWAIC against mating
model without male responsiveness to treatment effect 1 4;
SE of difference p 3:23; table B6). In both cases, the DIC
metric produced the same qualitative results (tables B5, B6).
HMM versus Alternative Analyses

Tables B7 and B8 summarize the output for the bout-agnostic
and BCI-based models, respectively, including mean poste-
rior values, standard errors, and effective sample sizes for all
parameters. We found that these simpler models made un-
tenable assumptions that prevented them from accurately
describing the distribution of interdisplay intervals in our
data set, resulting in biased estimates of males’ display effort
(fig. 6). Moreover, the bout-agnostic model could not esti-
mate the fixed effects associated with males’ social or envi-
ronmental context with the same precision as the HMM
(“Likelihood for LinearMixedModel PredictingMales’Har-
monic Mean Interval Lengths” in app. A). The BCI-based
model did return fairly precise estimates (“Likelihood for Gen-
eralized Linear Mixed Model Using a ‘Bout Criterion Inter-
val’ ” in app. A); however, Perry et al. (2017a) showed that
this precision is often misleading because this type of model
converges on the wrong values for coefficients.
This content downloaded from 194
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Discussion

The HMM and Sage Grouse Display Effort

We used a state-based statistical analysis to assess the dis-
play effort of male sage grouse, whose displays are grouped
in bouts. The HMM divided males’ display effort into two
separate components (fig. 3), which equipped us to make
finer-scale distinctions about their display behavior than
previous analyses of sage grouse. For example, we found that
variation in males’ overall display rates was mainly driven
by changes in the number of consecutive displays (i.e., bout
length), rather than within-bout display rates (i.e., interval
length). In retrospect, this makes sense: within-bout display
rates are relatively constrained (e.g., 95% of intervals are be-
tween 5 and 9 s; fig. 2B), but bout length varies widely (from
2 struts tomore than 20). In general, prior sage grouse studies
(as well as the bout-agnostic model that we fit) have com-
bined these two components of display effort into an overall
display rate (Wiley 1973b; Gibson and Bradbury 1985; Patri-
celli and Krakauer 2010). However, “display rates” may not
be themost appropriatemetric for this system, as the number
of display events per bout appears to be a better predictor of
male mating success in this species.
The HMM also enabled us to make detailed estimates of

males’ behavioral plasticity. Becausewe found that variation
in sage grouse males’ display effort is largely determined by
differences in the number of struts per bout, we focus our
discussion on males’ display persistence (rather than the
within-bout rates that differed by only fractions of a sec-
ond). On average, we found that males produced longer
bouts (i.e., had higher pcontinuing values) when a real or robotic
stimulus was present on the lek and when the robotic female
maintained an upright (or “interested”) posture (fig. 4A); ac-
counting for this male plasticity improved the predictive ac-
curacy of ourHMM(table B5).Moreover, we used the varying-
slopes (i.e., random-slopes) estimates for each identified male
in ourHMM to show that the degree of plasticity varied among
males and was related to their mating success (fig. 5).
Male Display Effort in the Absence of Female Stimuli

Most males performed shorter bouts in the absence of fe-
male stimuli (during pretrial periods). However, we found
that unmated males decreased their bout length less than
successfully mated males did (fig. 5A, 5B). In other words,
unmated males had a higher “baseline” display activity level
when females were absent. This finding is also consistent
with trends from another sage grouse experiment using
a robotic female (Patricelli and Krakauer 2010) and field
observations in other lekking Galliformes, including black
grouse (Tetrao tetrix; Höglund et al. 1997) and greater prai-
rie chickens (Tympanuchus cupido; Nooker and Sander-
cock 2008).
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Why would unsuccessful males continue to strut when
there are no females to court? In lekking species (e.g., sage
grouse), courtship displays often play a role in long-distance
attraction and lek advertisement, even when no females are
nearby (Gibson1989, 1996;HöglundandAlatalo 1995). Like
many species (Berglund et al. 1996;Galeotti 1998),male sage
grouse also use the samedisplay for both courtshipandmale-
male competition (Wiley 1973a, 1973b), although the role of
struts in the context of territoriality requires further study.
It is therefore possible that unsuccessful males (whomay be
younger or lower in quality) need to allocate more display
effort toward defending their territory and thus have less
energy to expend during courtship (Patricelli and Krakauer
2010). Another possibility is that successfully mated males
may bemore skillful at tactically adjusting their display effort
This content downloaded from 194
All use subject to University of Chicago Press Term
to invest more when females are present and in close prox-
imity (Patricelli and Krakauer 2010).
Male Responsiveness to Robot Treatment

Males’ responsiveness to robot behavior was also correlated
with their mating success.When female proximity and other
factors were controlled for, females mated more often with
males that produced long bouts regardless of the robotic
female’s apparent interest. In other words, females were less
likely to mate with males that showed high persistence only
when the robot indicated some interest in mating (fig. 5C,
5D). These findings are more consistent with the differential-
constraints hypothesis than with the differential-social-skills
hypothesis: sage grouse females seem to prefer males that
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show greater display persistence over males that are more
responsive to females’ outward behavior.

Tactical adjustments in male display behavior—for ex-
ample, producing shorter display bouts in certain social con-
ditions—may be especially important for individuals with
greater energetic constraints or lower endurance. In species
like sage grouse, repeated displays can become extremely
costly over time (Vehrencamp et al. 1989; Seymour and
Sozou 2009; Clark 2012). Given these costs, display persis-
tence may reflect differences in male vigor or stamina and,
ultimately, underlying genetic or developmental differences
(Byers et al. 2010). We hypothesize that unmated males
tend to have fewer resources to allocate to courtship, per-
haps because they display more in the absence of females.
With limited resources, these males would need to reduce
their display effort for foraging females, which are unlikely
to solicit in the immediate future (Perry et al. 2017b). From
this perspective, our results indicate that only the most suc-
cessful sage grouse males would have sufficient resources/
endurance to court foraging females until those females
transition to interested behaviors (either during the current
interaction or during that female’s future lek visits). This
general pattern is consistent with what has been found in
other species. For example, in the scorpionfly (Panorpa cog-
nata), high-conditionmales are indiscriminate in their choice
of females, whereasmales in poorer condition preferentially
invest in females of higher reproductive value (Engqvist and
Sauer 2001).

In the absence of direct information about males’ ener-
getic expenditure or body condition, we cannot directly test
the possibility that males’ display tactics andmating success
reflect variation in their underlying state. However, the sharp
decline in bout length over the breeding season (fig. 4) is con-
sistentwith the premise thatmales could not sustain extended
display bouts after weeks of effort. We also find that males’
within-bout intervals lengthened slightly over the course of
a day, which is also consistent with fatigue. Ongoing efforts
to tiemale condition and off-lek foraging behaviors to on-lek
courtship effort will address this possibility directly (Forbey
et al. 2017).
Modeling Variation among Display Events

In this article, we assumed that all display events were equiv-
alent, and we focused on the intervals between them. How-
ever, this would not be a reasonable assumption in other
taxa, where displays vary in length (or other properties, such
as signal amplitude). It would be straightforward to extend
our two-state HMM to include an additional fully observed
variable describing variation among display events. Unlike
the two hidden states in the HMM that we presented, which
could be distinguished only probabilistically, properties such
as signal duration or amplitude can be measured directly.
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As a result, a “partially hidden” Markov model could be
used, and the likelihood would be more tractable to calcu-
late than with a fully hidden HMM with additional states
(Scheffer and Wrobel 2001; Stan Development Team 2016,
sec. 9.6). This type of model would be particularly advanta-
geous for behavioral ecologists interested in the covariance
between the properties of animals’ individual display events
and the interdisplay intervals that separate them.
Final Modeling Considerations

We conclude with a few considerations for researchers mod-
eling complex display sequences. First, a modeling frame-
work that can approximate the data-generating process for
bout-structured data will yield better estimates (Perry et al.
2017a). For example, our HMM could provide better esti-
mates than either of the simpler display models that we fit
(i.e., the bout-agnostic and BCI-basedmodels), because those
models made untenable assumptions about the distribution
of our interval data (fig. 6). Second, a modeling framework
that can accommodate censored observations (like ourHMM)
will provide less biased estimates when evaluating animals’
display effort from time series data. For our analyses, incor-
porating censored values was especially important for mod-
eling sampling periods during which males performed few,
or no, displays (e.g., when females were absent from the lek).
The inclusion of these samples, which may be underrepre-
sented or excluded in traditional analyses, was particularly
illuminating for inferring different patterns of display among
males. Finally, this article highlights the biological value of a
statistical model capable of simultaneously estimating changes
inmultiple components of display effort. Although we found
that most of the between-individual variation in sage grouse
males’ display behavior can be attributed to changes in the
number of consecutive displays producedper bout, other spe-
cies that display in bouts may show different patterns (e.g.,
orthopterans and anurans; Gerhardt andHuber 2002). Some
animals, for example, may respond to different social situa-
tions by simultaneously adjusting both their bout length and
their within-bout display rates. In this scenario, an animal that
incurs higher costs from longer display bouts could potentially
compensate by relaxing their within-bout display rate or
extending their breaks between bouts. In such cases, using
a modeling framework capable of estimating the covariance
structure between model parameters describing both bout
duration and display rate, like our HMM, could prove espe-
cially enlightening for studying trade-offs in multiple, dy-
namic components of display effort (Perry et al. 2017a).
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