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Abstract

Questions: Which environmental variables influence grass diversity in West

Africa? What are the effects of climate and grass functional traits on the spatial

patterns (richness and abundance) of the grass clades Andropogoneae, Paniceae

and Chloridoideae?

Location:West Africa, demarcated by the Atlantic Ocean in the west and south

(20° W and 4° N), the Sahara desert in the north (25° N) and the border

between Niger and Chad in the east (20° E).

Methods: Based on 38 912 georeferenced occurrence records, we modelled the

distribution of 302 grass species (51% of West African grass diversity). We inte-

grated species richness, abundance and functional traits (life cycle, photosyn-

thetic type and height) to determine the contribution of the most speciose grass

clades (Andropogoneae, Paniceae and Chloridoideae) to overall grass diversity

inWest Africa.

Results: Precipitation is the variable most often influencing the species distribu-

tion models of grasses in West Africa. Richness and relative abundance of the

tribe Andropogoneae show a centre of diversity in Sudanian savanna regions.

The height of Andropogoneae species, generally >150 cm, is driving this ecologi-

cal dominance. Species richness of the tribe Paniceae is more dispersed and

shows two main centres of abundance: The southern regions with higher mean

annual precipitation and tree density are dominated by C3 Paniceae species. The

Sahelian regions in the north are dominated by short Paniceae species with

the C4 NAD-ME photosynthetic subtype, as well as Chloridoideae possessing

the same functional attributes.

Conclusions: Our study provides insight into the environmental correlates of

grass species richness in West Africa and contributes to the much-needed

research on tropical rangelands. Moreover, the integration of evolutionary

history significantly improves our understanding of large-scale biodiversity

patterns.
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Introduction

Tropical rangelands (grasslands and savanna) represent

about 20% of the Earth’s terrestrial vegetation cover

(Scholes & Archer 1997) and have been shown to be a

major carbon sink (Grace et al. 2006). Furthermore, they

provide habitat for wildlife and support the livelihood of

nearly one fifth of the world’s population (Solbrig et al.

1996). However, the spatial extent and biodiversity of

those biomes are threatened by climate change through

increased CO2 levels (Higgins & Scheiter 2012) or reduced

precipitation (H�ely et al. 2006), as well as intense human

exploitation (Hoekstra et al. 2004). Despite this high level

of vulnerability, conservation efforts are still hampered

due to a limited understanding of the functioning of range-

lands and a general lack of recognition of their value (Parr

et al. 2014). The plant family Poaceae, the fifth most

species-rich family of flowering plants, forms a major

component and is one of the key elements of their

structure (Heywood et al. 2007). Thus, understanding the

factors that determine the geographic distribution and

community assembly of grasses is crucial to predict the

potential dynamics of grassy biomes under changing

environmental conditions.

Previous studies have suggested that the geographic

distribution of grasses is determined by the correlation

between temperature and photosynthetic pathway (e.g.

Batanouny et al. 1988). The C4 photosynthetic pathway is

a set of biochemical andmorphological traits, evolved from

the C3 pathway multiple times in the plant kingdom. It

increases photosynthetic efficiency at low CO2 levels and

reduced photorespiration, resulting in higher net photo-

synthetic rates (Sage 2004). At the same time, the C4

pathway is more energy intensive and therefore has a

competitive advantage over the C3 pathway only in hot,

dry or saline environments and under high light intensities

(Sage 2004).

However, Edwards et al. (2010) argued that the

observed temperature differences between C3 and C4

grasses is mainly based on a comparison of distantly related

species, specifically species from the BEP clade

(Bambusoideae, Ehrhartoideae and Pooideae; exclusively

C3) and the PACMAD clade (Panicoideae, Aristidoideae,

Chloridoideae, Micrairioideae, Arundinoideae and Dan-

thonioideae; mixed C3/C4) that likely diverged more than

50 million years ago (Appendix S1). Members of the PAC-

MAD clade have been shown to be generally warm-sea-

son, regardless of their photosynthetic pathway. Thus, the

observed ecological differences between the

photosynthetic types may in fact reflect the divergent

evolutionary histories of the two clades (Edwards & Still

2008). Moreover, three biochemical subtypes have been

identified among C4 grasses. These subtypes are named

after the enzyme used in the decarboxylation reaction:

NAD-malic enzyme (NAD-ME), NADP-malic enzyme

(NADP-ME) and PEP carboxykinase (PCK). Their distribu-

tion was shown to correlate with precipitation rather than

temperature (e.g. Ellis et al. 1980; Schmidt et al. 2011b):

NAD-ME plants are usually found in arid regions, NADP-

ME in mesic regions, while PCK plants show no clear

preferences. Given the association of these C4 subtypes

with particular grass subfamilies, the correlation between

the distribution of taxonomic groups and precipitation

may actually reflect a suite of adaptive traits unique to

each group. Those traits complement the biochemical

subtypes (Taub 2000; Cabido et al. 2008) and highlight the

role of historical contingency. Good candidates could be

functional traits related to resource capture and utilization,

such as plant height and leaf traits (Oyarzabal et al. 2008),

or strategies to cope with stress and disturbance, such as

the perennial life cycle (Sarmiento 1992).

In regions where the mean annual temperature is above

20 °C, the threshold enabling C4 plants to dominate over

C3 plants (Cerling et al. 1997), the spatial distribution of

grasses should mainly be driven by precipitation and func-

tional traits (including the photosynthetic pathway). West

Africa is an ideal example of a region dominated by grassy

biomes with uniformly high temperatures. However, the

only broad-scale study of grass diversity for West Africa to

date focused on determining grass communities based on

herbarium specimens and records in countries’ floras

(Clayton & Hepper 1974). Species distribution modelling

(SDM) now affords the opportunity to assess the associa-

tion between species occurrence data and environmental

parameters to quantify ecological niches and derive poten-

tial geographic distributions (Guisan & Zimmermann

2000; Peterson 2006). This approach is particularly useful

when collection records are scarce (Guisan & Zimmer-

mann 2000). Despite indications that stacked SDMs may

over-predict species richness compared to observations

(Guisan & Rahbek 2011), combining SDMs of multiple

species is a valuable approach to bridge the sampling bias

and gaps in distribution records of poorly sampled tropical

areas. This approach has been successfully used to infer

species richness and community assembly (de la Estrella

et al. 2012;Mateo et al. 2012; Pottier et al. 2013).

In this study, we examine the spatial patterns of grass

diversity in West Africa and their environmental, taxo-

nomic and functional correlates, drawing on extensive

species occurrence databases and environmental data. This

enables us to assess regional patterns of grass diversity with

a precision (both spatially and taxonomically) that is

307
Journal of Vegetation Science
Doi: 10.1111/jvs.12360© 2016 International Association for Vegetation Science

G. Bocksberger et al. Climate and grasses



usually not achieved in global studies. More specifically,

we compare the potential spatial distribution of the three

most abundant grass taxonomic groups (Andropogoneae,

Paniceae, Chloridoideae, hereafter referred as clades) and

their relation to climate and functional traits (life cycle,

plant height, photosynthetic types and subtypes). Follow-

ing previous studies, we predict that: (1) in West Africa

precipitation is the main determinant of grass species’

spatial distribution; (2) the clades Andropogoneae, Pan-

iceae and Chloridoideae should be dominant in different

habitats; and (3) this partitioning is not necessarily only

linked to C3/C4 photosynthetic metabolism, but driven by

clade-specific morphological and physiological adapta-

tions. Our study provides insights into the environmental

correlates of grass species diversity in West Africa and

contributes to the much-needed research on tropical

grassy biomes. Moreover, we show how the consideration

of evolutionary history significantly improves our under-

standing of large-scale biodiversity patterns.

Methods

Study region and environmental variables

Our study focuses on western sub-Saharan Africa, cover-

ing about 8.5million km2, and is demarcated by the Atlantic

Ocean in the west and south (20° Wand 4° N), the Sahara

desert in the north (25° N) and the border between Niger

and Chad in the east (20° E; Fig. 1). The climate is tropical

and strongly seasonal (unimodal in the north, bimodal in

the south) with marked rainfall gradients from the

western coast and the Cameroon coast (annual rain-

fall = 4500 mm) to the north (annual rainfall <100 mm).

The vegetation of this region has been classified into 30 dif-

ferent ecoregions (Olson et al. 2001). We aggregated the

original ecoregions into five coarse groups: desert, Sahelian

savanna, Sudanian savanna, Forest-savanna mosaic

and forest (from north to south; Fig. 1; see Appendix S1

for the original ecoregions and biomes).

We compiled a set of 23 environmental variables at a

2.5 arc-min resolution, including altitude, 19 bioclimatic

layers of the WORLDCLIM data set (Hijmans et al. 2005),

CGIAR-CSI global potential evapotranspiration and global

aridity (Zomer et al. 2008), and tree cover continuous

fields (DeFries et al. 2000; for the complete list of layers

and acronyms see Appendix S1). To avoid problems asso-

ciated with collinearity which may result in model over-

fitting (Dormann et al. 2007), it is useful to reduce the

number of variables used in the models. Therefore we per-

formed a Pearson’s pair-wise correlation analysis

(Appendix S1) and retained only one per set of highly cor-

related variables (Pearson’s r ≥ 0.8; de la Estrella et al.

2012). We obtained a working data set of eight variables

(alt, bio1, bio8, bio11, bio12, bio17, PET, Tcov –
Appendix S1). Data layer manipulations were performed

in R (R Foundation for Statistical Computing, Vienna, AT)

using the raster package (v 2.3-40, http://CRAN.R-projec-

t.org/package=raster).

Species sampling

We compiled georeferenced species records for Poaceae

from three databases: (1)West African Vegetation database

(17 675 records) of the Senckenberg Research Institute

(Janßen et al. 2011), (2) Flotrop (76 751 records) com-

Fig. 1. Area of study with occurrence points (38 530) from GBIF data, herbarium data and vegetation survey data. The underlying colours represents the

five main biomes adapted fromOlson et al. (2001).
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piled by the Centre de cooperation internationale en

recherche agronomique pour le d�eveloppement (CIRAD;

Daget & Gaston 2001), and (3) SIG-Ivoire (5498 records)

compiled at the Conservatoire et Jardin botaniques de la

ville de Gen�eve (Chatelain et al. 2011). These databases

were complemented by specimen data from four different

herbaria (FR – 2750; OUA – 2442; K and P – 271). Addi-

tional records for species present in our data set were

extracted from the global biodiversity information facility

excluding records with imprecise spatial resolution or mis-

takes (e.g. wrong country, locality in the sea; GBIF – 8173

records). In total, our data set comprised 113 560 records

representing 495 species (the contribution of each institu-

tion is summarized in Appendix S1). All species names

were checked against the African Plant Database (Klopper

et al. 2007) and synonyms were resolved. From these

records, we retained unique species presences for each 2.5

arc-min grid cell. For species distribution modelling only

species with a minimum of ten unique records were kept

(since a very low number of localities leads to high uncer-

tainties in the models; Wisz et al. 2008). This resulted in a

reduced data set of 302 species represented by 38 912

records (from ten to 1371 records per species; Fig. 1,

Appendix S1). This sampling corresponds to 51.3% of the

entire West African grass flora, as recorded in the Flora of

West Tropical Africa (Hepper 1972).

For each of the 302 species, information about their

taxonomic relationship, photosynthetic pathway (C3 or C4

and subtypes PCK, NADP-ME and NAD-ME), life

cycle (annual/perennial) and height were collected

(Appendix S1). Each species was assigned to a subfamily

and a tribe following Watson & Dallwitz (http://delta-

intkey.com/grass/, v Nov 2009), S�anchez-Ken & Clark

(2010) and Morrone et al. (2012). In total, eight grass sub-

families and 16 tribes are included in our data set (see

Appendix S1 for a cladogram of the Poaceae subfamilies

and their associated photosynthetic type). We focus partic-

ularly on the subfamily Chloridoideae and the tribes

Andropogoneae and Paniceae of Panicoideae subfamily

(together representing 89% of the Panicoideae species in

our data set). Both tribes are monophyletic and character-

ized by a set of traits that support their separation: Andro-

pogoneae are mostly tall perennials utilizing exclusively

the C4 subtype NADP-ME, while Paniceae are mostly

short annual or perennial plants and use C3 as well as the

three subtypes of C4 photosynthesis. We focus on these

clades because they represent more than 80% of the spe-

cies in our study (Andropogoneae 90 spp., Paniceae 92

spp., Chloridoideae 72 spp.), and are thus likely to be well

sampled and are good surrogates for the broad-scale pat-

terns in grass diversity. Moreover, it makes our study

more comparable to other studies that also focus on those

groups. The photosynthetic type for 191 species was

obtained from the literature (Downton 1975; Ellis 1977)

and own studies (Schmidt et al. 2011a). Species with

unknown photosynthetic type (111 spp.) were assigned

the type of the genus, when there was no evidence of

more than one type/subtype present within the genus. In

cases where genera were known to have more than one

photosynthetic type (e.g. Panicum, Sporobolus), the photo-

synthetic type was inferred as ambiguous (19 spp.). This

resulted in a data set including 29 C3 species, and 254 C4

species (148 of the NADP-ME, 21 of the NAD-ME, 36 of

the PCK subtypes, six indiscernible between NAD-ME and

PCK, and 43 of unknown subtype). Furthermore, we

extracted data on the life cycle (annual/perennial) and

plant height from GrassBase [The Online World Grass

Flora. http://www.kew.org/data/grasses-db.html (accessed

July 2009)]. Our data set contained 134 annuals, 152

perennials and 16 species with an ambiguous life cycle.

Finally, we classified the species based on their maximum

height into two classes: plants with a maximum height up

to 1.5 m (short) and plants above 1.5 m in height (tall).

These classes include 187 and 115 species, respectively.

To quantify the climatic tolerances of the grass tribes,

we extracted the climate data for each species with two or

more records and plotted the species accumulation curve

of each tribe against the key environmental gradients.

Species distributionmodel and bias-corrected null

model

To model the potential species distributions, we selected

the program Maxent (v 3.3.3e; Phillips et al. 2006), which

was specifically developed for presence-only data and has

been shown to outperform most other modelling applica-

tions (Elith et al. 2006). It is also least affected by georefer-

encing errors (Graham et al. 2008) and performs best

when only few presence records are available (Wisz et al.

2008). However SDM predictions are partly dependent on

the algorithm used. Therefore, to support the results

obtained with Maxent we also used an ensemble mod-

elling approach implemented in the R package biomod2

(Thuiller et al. 2009 - see detailed method and results in

Appendix S2). Presence-only data are often affected by

sample selection bias, where some areas in the landscape

are sampled more intensively than others (Phillips et al.

2009). Therefore, to correct for any such geographical sam-

pling bias and add to the predictive performance of the

model we used the ‘target group absences’ technique

(Phillips et al. 2009; Mateo et al. 2010). We forcedMaxent

to randomly draw 4000 pseudo-absences from the 5721

grid cells with a grass species record instead of drawing

them from the whole extent of the study region. To further

assure that the target group data are not biased in environ-

mental space (Fielding & Bell 1997), we performed a chi-
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square test on the distribution of the sampled cells and the

whole study area along the eight environmental variables.

As a measure of accuracy we used the AUC (area under

the curve) value derived from a ROC (threshold receiver

operating characteristic) curve. However, as the power of

the AUC has been contested (Lobo et al. 2008), we chose a

bias-corrected null model approach, as proposed by Raes &

ter Steege (2007), to validate our models. This method

determines the significance of a SDM based on n records by

testing its AUC value against the 95th percentile of a null

distribution of expected AUC values. The null distribution

is obtained by modelling 1000 sets of n presence records

drawn from the study region. Following Raes & ter Steege

(2007), wemodelled individual null distributions for ten to

35 records, 40–50 records (with intervals of five records),

60–100 (with intervals of ten), 150–300 (with intervals of

50), 400–1000 (with intervals of 100) and for 1300 records.

Both the ‘presence’ records and 4000 ‘pseudo-absence’

records were drawn from the cells with a grass species

record.

Species richness and relative abundance

The single species SDMswere stacked, summing the proba-

bilities predicted byMaxent to derive species richnessmaps,

as recommended by Dubuis et al. (2011). Differences in cli-

matic tolerances between clades (e.g. due to different pho-

tosynthetic types) should lead to divergent distribution

patterns among clades along climatic gradients. For exam-

ple, one would expect C4 grasses to be more diverse in arid

environments, while C3 plants should exhibit greater diver-

sity in mesic habitats. To assess regional differences in the

prevalence of grass tribes, we infer the contribution of each

of the major taxonomic groups to the grass flora through-

out the study region. For each grid cell, we calculated the

relative abundance of each tribe (i.e. the fraction of the total

species richness; Fig. 2).We normalized these values by the

expected relative abundance (based on the proportion of

tribes in the data set) to account for the differences in their

total species diversity. The degree of divergence from the

null expectation (even contribution of all clades) allows us

to identify regions where particular taxonomic groups are

over- or underrepresented.

Influence of functional traits on spatial distribution

We calculated the correlation between the spatial distribu-

tion of the relative abundance (i.e. the fraction of the

total species richness per grid cell) of the three clades

(Andropogoneae, Paniceae, Chloridoideae), mean annual

precipitation, photosynthetic types and subtypes, life cycle

(annual and perennial) and height classes (short and tall).

Then, we used semi-partial correlation, included in the R

package ppcor (http://CRAN.R-project.org/package=ppcor),

to measure the association between annual precipitation

and the spatial distribution of the taxonomic groups, while

removing the influence of the photosynthetic type,

life cycle or height. Semi-partial correlation statistically

resolves the correlations among intercorrelated variables

and calculates the correlation between two variables while

the others are held constant (Sokal & Rohlf 1995). High

values indicate that the correlation is not influenced by

the third variable; by contrast low values indicate that the

variable held constant influences the correlation.

Results

Climatic tolerances

Species accumulation curves show the distribution of

species diversity for each grass tribe along environmental

gradients in West Africa (Fig. 3, Appendix S3). Note that

from here we focus only on the four factors that were

identified as important contributors in the species distribu-

tion models (Fig. 4 below) and showed the strongest

divergences along the environmental gradients: mean

annual precipitation, mean temperature of wettest quar-

Fig. 2. Calculation of the corrected relative abundances. The relative

species richness of each group (‘Clade abundance’) in a grid cell is corrected

by subtracting the corresponding abundance in the regional data. While the

relative species richness might represent potential sampling biases, the

corrected clade abundance indicates over- or underrepresentation in

relation to the total diversity of each clade in the data set.
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ter, potential evapotranspiration and tree cover. The Pan-

iceae and Andropogoneae occupy overall similar environ-

ments, but with markedly narrower tolerances in the

Andropogoneae. In contrast to the other clades, Chlori-

doideae occupy regions with low precipitation and tree

cover, and high temperatures.

Species distributionmodelling and predicted richness

Mean annual precipitation (Bio12) and precipitation of

driest quarter (Bio17) contributed most to the models and

had the highest permutation importance (Fig. 4). The vari-

able importance extracted from the five models run with

biomod2 are comparable, thus we show here only the

results from Maxent (see Appendix S2). These results were

found to be consistent across the tribes, Andropogoneae

and Paniceae, and the subfamily Chloridoideae, although in

the case of the latter altitude (ALT) and potential evapotran-

spiration (PET) contribute similarly (Appendix S3).

Of the 302 modelled species, 299 (99%) had a distribu-

tion pattern that differed significantly from the random

expectation (Appendix S3). The stacked SDMs derived

from the biomod2 models were highly correlated with the

Maxent results (see Appendix S2), thus we present here

only the latter results. The highest grass species richness

can be found in the Sudanian savanna region of Ivory

●
●

●

●
●

●

●
●

●

●
●

●

(a) Bio12 − mean annual precipitation [mm] (b) Bio8 − mean temperature of the wettest quarter [°C]

(c) PET − potential evapo−transpiration [mm] (d) Tcov − Tree cover [%]

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0 1000 2000 20 25 30

1400 1600 1800 2000 2200 0 10 20 30 40 50

Fr
ac

tio
n 

of
 s

pe
ci

es

Tribe

Andropogoneae

Chloridoideae

Paniceae

Fig. 3. Cumulative distribution curves of each clade along four environmental gradients (a) mean annual precipitation, (b) mean temperature of the

wettest quarter, (c) potential evapo-transpiration, (d) Tree cover. All species with a minimum of two collections were included. Each dot in the curve

represents the mean value of collection localities of one species. The dot with error bar indicates, for each clade, the mean value of the clade and SD.
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Coast, Ghana, Togo, Benin and western Nigeria, while the

lowest predicted richness was found in the Sahara region

(Fig. 5). In the south, grass richness decreases sharply

towards more forested regions. It should be noted, however,

that the accuracy of species richness predictions from S-SDM

may vary along environmental gradients (Pottier et al.

2013). Thus, such predictions should be interpreted with

care, even if the individual SDMs are accurate.

All clades (Andropogoneae, Paniceae and Chlori-

doideae) show similar patterns of species richness in West

Africa, with the highest diversity in mesic savanna habitats

(Sudanian savanna; Fig. 6a,c,e). However, the tribe-speci-

fic relative abundances reveal pronounced differences

(Fig. 6b, d, f). Andropogoneae contribute more to grass

richness in the savanna belt of the Sudanian region and

the savanna–forest mosaic bordering the closed tropical

forest, whereas the Chloridoideae contribute more to

species richness in the Sahel region. The Paniceae show a

high relative abundance in two different regions: the

savannas of the Sahel in the north and the rain forest of

upper and lower Guinea in the south. Six of the 16

Paniceae genera of our data set have species occurring in

both regions, four genera are present mostly in the north,

six only in the south (including the five exclusively C3 Pan-

iceae genera of our data set).

Correlationwith precipitation and functional traits

The distribution of the Panicoid tribes (Andropogoneae

and Paniceae) and the chloridoids along the precipita-

tion gradient are diametrically opposed, with the pro-

portion of panicoids positively (Pearson’s r = 0.69 and

0.52) and that of the chloridoids negatively

(r = �0.82) correlated with mean annual precipitation

(Table 1). The proportion of C3 grasses and the C4

subtypes NADP-ME are positively correlated with mean

annual precipitation (C3 r = 0.83, NADP-ME r = 0.55),

the C4 subtype NAD-ME is negatively correlated

(r = �0.83), while the C4 subtype PCK is not corre-

lated with mean annual precipitation (r = �0.04). Life

cycle is not correlated with mean annual precipitation

(annual r = �0.10, perennial r = 0.14), while plant

height is highly correlated (r = 0.76; short being nega-

tively correlated, and tall being positively correlated;

Appendix S3). The results of the semi-partial correla-

tion (Table 1) suggest that for Andropogoneae, the

spatial distribution is still highly correlated with annual

precipitation when the C4 subtype NADP-ME is held

constant (semi-partial r = 0.45), but not when plant

height is held constant (semi-partial r = 0.003). The

correlation of the spatial distribution of Paniceae with

mean annual precipitation stays high when the C4

subtype NADP-ME is held constant (semi-partial

r = 0.43), but is reduced when the C3 pathway, the

C4 subtype NAD-ME and plant height are held con-

stant (semi-partial r = 0.08, r = 0.22 and r = 0.13). For

Chloridoideae, the correlation with annual precipitation

is lower when the C4 subtype NAD-ME, as well as

plant height, are held constant (semi-partial r = �0.17,

and r = �0.28).
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Fig. 4. Relative contribution and permutation importance of each environmental variable in the models. The boxplots represent the first (top) and third

(bottom) quartile of the data, themedian is represented by the line and outliers by dots. The contribution depends on the path of themodel and reflects how

much the variable added to the model gain. The permutation importance is based on the final model and calculated by randomly permuting the values of

that variable among the training points and measuring the resulting decrease in training AUC (Phillips et al. 2006). Mean annual precipitation (Bio12) and

precipitation of the driest quarter (Bio17) are the most important variables in the models, which indicates the strong influence of precipitation on grass

distribution at our study scale.
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Discussion

We assessed the correlations between spatial distribution,

traits and climate for grasses in West Africa. Overall, mean

annual precipitation is the most important factor deter-

mining the spatial patterns of grass diversity inWest Africa,

confirming the results of previous studies on African

vegetation classes (Greve et al. 2011) and determinants of

savanna tree cover (Sankaran et al. 2005). Furthermore,

our results corroborate the findings of Edwards & Smith

(2010), who showed that mean annual precipitation (as a

proxy for water availability) is the most important climatic

factor influencing the distribution of grasses at regional

to global scales. While rainfall in West Africa is strongly

seasonal (with one rainy season in the north and two in

the south), mean annual precipitation is highly correlated

with the mean precipitation of the wettest quarter (Bio16

– representing precipitation during the growing season)

and precipitation seasonality.

The analysis of the major taxonomic groups of the West

African grass flora reveals different optima along the

precipitation gradient, suggesting a possible divergence in

their climatic tolerances. As expected, the difference

between panicoids and chloridoids is minimal along the

temperature gradient (mean annual temperature: 26.3 °C
for Paniceae and 25.8 °C for Andropogoneae v 27.1 °C for

Chloridoideae), but was found to be more pronounced

along the precipitation gradient (mean annual precipitation:

994 mm and 1048 mm vs. 778 mm). This differentiation

between panicoids and chloridoids has been previously

observed on a global scale (Edwards & Smith 2010), for

North America (Taub 2000) and for Argentina (Cabido et al.

2008).

While both Andropogoneae and Paniceae seemingly

cover the same environmental space along the precipita-

tion gradient (Fig. 3), the steeper accumulation curve for

the Andropogoneae indicates a narrower realized climate

niche. Both species richness and relative abundance

patterns are highly congruent in the Andropogoneae,

indicating dominance in the Sudanian savannas. Andro-

pogoneae have the NADP-ME subtype of C4 photosynthe-

sis, which has been shown to be more competitive at high

water availability than the other subtypes due to higher

quantum yield (Wan & Sage 2001).

Our results indicate that the correlation between the

distribution of Andropogoneae and precipitation is in fact

dependent on their height. Tall grasses are more competi-

tive for light, but are also dependent on disturbances (such

0 km 350 km 700 km

N5

10

15

20

25

−10 0 10 20

Longitude (°)

La
tit

ud
e 

(°
)

Potential
species richness
Low High

Fig. 5. Potential grass species richness in West Africa derived from 299 stacked significant species distribution models (S-SDM). Darker tones indicate

higher species richness.
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Table 1. Correlations between mean annual precipitation (MAP) and the spatial distribution of the clades Andropogoneae, Paniceae and subfamily Chlori-

doideae, and semi-partial correlation while removing the influence of photosynthetic type, life cycle and size. In the semi-partial correlation results, values

highlighted in bold indicate that the variable held constant is influencing the correlation with MAP. ‘–’ indicates that the semi-partial correlation does not

apply, because there is no correlation between the functional trait and MAP.

Correlation with MAP Semi-Partial Correlation with MAPWhen Functional Trait Held Constant

Photosynthetic Type Traits

C3 NADP-ME NAD-ME PCK Life cycle Height

Andropogoneae 0.691 NA 0.459 NA NA – 0.003

Paniceae 0.529 0.088 0.430 0.220 – – 0.136

Chloridoideae �0.829 NA NA �0.178 – – �0.284
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as fire and herbivory) as leaf litter from previous years

would have a negative impact on the young, shade-

intolerant shoots (Bond et al. 2003). In fact, tall grasses

may induce fires through their high yield and low decom-

position rates, thus contributing to shaping their ideal

environment (Bond et al. 2003). For example, the invasive

Andropogon gayanus in Australia has been shown to alter

the natural vegetation by contributing to an increase in fire

intensities (Rossiter et al. 2003). Thus, Andropogoneae

have evolved morphological and physiological characters

that allow them to promote disturbances and outcompete

other grasses and closed-canopy trees, which may explain

their dominance in the mesic savannas of West Africa.

Thus, incorporating fire as an additional predictor may

further improve the accuracy of potential distribution

models in Andropogoneae.

Some Paniceae species possess the same features that

allow the Andropogoneae to dominate in Sudanian savan-

nas, i.e. the NADP-ME subtype and tall growth, but never-

theless contribute much less to grass diversity in that

region. In contrast, they show a bimodal pattern of high

contributions in the north (Sahelian savannas) and south

(mosaic of forest and savannas, forest regions), which may

be due to the higher morphological and physiological

variability compared to the Andropogoneae. Most impor-

tantly, the Paniceae express all subtypes of C4 photosyn-

thesis, as well as C3 photosynthesis. This variability allows

them to extend into a wider range of habitats than the

Andropogoneae, and to dominate when they are not

outcompeted by Andropogoneae. This is supported by

Osborne (2008), who showed that Paniceae represent a

larger fraction of grass diversity in moist and aseasonal

climates of the tropics. In our data set, the genera

contributing to the dominance of Paniceae in the forested

regions are now recognized as the subtribe Boivinelineae,

which includes species with broad lanceolate leaves and

mostly C3 photosynthesis (Morrone et al. 2012). Paniceae

also contribute substantially in the drier northern

regions, where water availability is insufficient for the

Andropogoneae.

Our results show that the Chloridoideae are overrepre-

sented in Sahelian savannas and the Sahara Desert, regions

with low precipitation and high temperatures. This is

confirmed by fossil phytolith assemblages (a collection of

siliceous plant remains used in palaeovegetation recon-

struction) composed mostly of chloridoid phytoliths,

which have been shown to be good proxies for the AET/

PET ratio (the ratio of annual actual evapotranspiration to

annual potential evapotranspiration) of Sahelian savannas

in West Africa (Bremond et al. 2005). The contribution of

the subfamily Chloridoideae is congruent with its tolerance

profile. The adaptation of the Chloridoideae to dry and hot

habitats is linked to their generally small size and the C4

NAD-ME pathway, which has been shown to confer better

drought resistance (Ghannoum et al. 2002).

We conclude that precipitation is the main climatic

factor influencing the broad-scale distribution patterns of

grasses in West Africa. Nevertheless, the different grass

clades have evolved both physiological and morphological

adaptations allowing each to dominate the grass flora

under specific conditions along the rainfall gradient. Plant

size explains the correlation of precipitation with the three

taxonomic groups, indicating that in addition to the photo-

synthetic type, other traits need to be considered when

studying the spatial distribution of grasses. Moreover, we

argue that broad-scale analyses of species richness should

ideally be complemented by evaluations of specific clades

to gain better insight into the distribution of diversity and

the regional composition of the flora.
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