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Surveying endangered species is necessary to evaluate conservation effectiveness. Camera

trapping and biometric computer vision are recent technological advances. They have impacted on

themethods applicable tofield surveys and thesemethodshavegained significantmomentumover

the last decade. Yet, most researchers inspect footage manually and few studies have used

automatedsemanticprocessingofvideo trapdata fromthefield.Theparticularaimof this study is to

evaluate methods that incorporate automated face detection technology as an aid to estimate site

use of two chimpanzee communities based on camera trapping. As a comparative baseline we

employ traditional manual inspection of footage. Our analysis focuses specifically on the basic

parameter of occurrencewherewe assess the performance and practical value of chimpanzee face

detection software.We found that the semi-automated data processing required only 2–4%of the

time compared to the purely manual analysis. This is a non-negligible increase in efficiency that is

critical when assessing the feasibility of camera trap occupancy surveys. Our evaluations suggest

that our methodology estimates the proportion of sites used relatively reliably. Chimpanzees are

mostly detected when they are present and when videos are filmed in high-resolution: the highest

recall ratewas77%, for a false alarm rateof 2.8% for videos containingonly chimpanzee frontal face

views. Certainly, our study is only a first step for transferring face detection software from the lab

into field application. Our results are promising and indicate that the current limitation of detecting

chimpanzees in camera trap footagedue to lackof suitable faceviewscanbeeasilyovercomeonthe

level offield data collection, that is, by the combinedplacement ofmultiple high-resolution cameras

facing reverse directions. This will enable to routinely conduct chimpanzee occupancy surveys

based on camera trapping and semi-automated processing of footage.
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RESEARCH HIGHLIGHTS

Using semi-automated ape face detection technology for processing camera trap footage

requires only 2–4% of the time compared to manual analysis and allows to estimate site use by

chimpanzees relatively reliably.

1 | INTRODUCTION

1.1 | Motivation

Biodiversity has declined and continues to decline around the world.

This is true of great ape populations, which have dramatically

decreased in numbers and distribution over the past 3 decades

(Campbell, Kuehl, N’Goran Kouamé, & Boesch, 2008; Funwi-Gabga

et al., 2014; Greengrass, 2009; Junker et al., 2012; Walsh et al., 2003).

In light of multiple drivers of decline (habitat loss (Gates, 1996;

Junker et al., 2012; Wich et al., 2008, 2014), hunting (Gates, 1996;

Kuehl et al., 2009; Walsh et al., 2003), and infectious diseases
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(Bermejo et al., 2006; Köndgen et al., 2008; Leendertz et al., 2004,

2006;Woodford, Butynski, & Karesh, 2002)), we face the arduous task

of conserving and restoring ape populations above critical levels and to

secure them as a global community. To do this, it is first necessary to

estimate distribution and population sizes accurately in order to

allocate conservation efforts to where they are most needed (Carlsen,

Leus, Traylor-Holzer, & McKenna, 2012; Dunn et al., 2014; IUCN &

ICCN, 2012; Kormos &Boesch, 2003;Maldonado et al., 2012;Morgan

et al., 2011; Oates et al., 2007; Plumptre et al., 2010; Tweh et al.,

2014). Distribution and density estimates of individuals allow

inference on changes in population size. With this information,

conservationists can establish and prioritize protected areas and will

have a baseline estimate for assessing the effectiveness of their efforts

over time (Kormos & Boesch, 2003; Nichols & Williams, 2006;

Plumptre & Cox, 2006).

1.2 | General approach

Toobtainpopulationestimates,monitoringneeds tobe regular andover a

wide range of areas that are inhabited by a species. Long-termmonitoring

is also important to address various ecological questions, such as the

determination of habitat use, resource use, community dynamics, and

community relationships. Yet, with elusive species, such as apes, direct

observations are difficult to obtain without massive habituation efforts,

which generates a need for reliable indirect monitoring methods (Head

et al., 2013; Kuehl, Maisels, Williamson, & Ancrenaz, 2008). An array of

indirect monitoring techniques have thus been developed and employed,

including line transect nest and dung counts, camera trapping, and non-

invasive genetic sampling (Buckland, Plumptre, Thomas, &Rexstad, 2010;

Guschanski et al., 2009; Head et al., 2013; Kuehl et al., 2007, 2008;

Kouakou,Boesch,&Kuehl,2009;Plumptre&Reynolds,1996;Todd,Kühl,

Cipolletta, & Walsh, 2008). Distribution and abundance can then be

inferred using design-based inference, spatial modeling techniques,

or capture–recapture methods (Arandjelovic et al., 2010; Borchers,

Buckland, & Zucchini, 2002; Buckland et al., 2001; Head et al., 2013;

Murai et al., 2013; Tweh et al., 2014).

1.3 | Problem statement

However, while these methods are very useful for conservation

research, some of them can nevertheless be labor, time, and cost

intensive, for they require trained staff, adequate equipment, and

regular repetition (Gaston & O’Neill, 2004). Furthermore, some

monitoringmethods are vulnerable to human observer biases (Tuyttens

et al., 2014).One exception is camera trapping that is less dependent on

human observer skills in the field. However, camera trapping also

requires correct identification of individuals to, for example, estimate

occupancy or population size (O'Connell, Nichols, & Karanth, 2010) and

is ideally only used on demographically closed populationswithminimal

growth rates andmigration (Borchers&Efford, 2008;Headet al., 2013).

Although advantageous to non-invasively observe elusive species and

amass large amounts of data (Noss et al., 2012), the technique is, when

used conventionally, also labor and time intensive, requiring skilled

observers to process the video data.

1.4 | Animal biometrics

In response to this problem, animal biometrics has made progress in

developing computerized methods for automated detection and

individual identification (Gaston & O’Neill, 2004; Kühl & Burghardt,

2013). Kühl and Burghardt (2013) defined animal biometrics as the

utilization of phenotypic characteristics that can identify species and in

some scenarios even individuals, by exploiting body morphologies,

coat patterns, and general appearance, vocalizations, or behaviors.

Based on phenotypic observations and distinct animal characteristics,

biometric software has helped to identify individual elephants fromear

nicks (Ardovini, Cinque, & Sangineto, 2008), dolphins from dorsal fin

shapes (Araabi, Kehtarnavaz, McKinney, Hillman, & Würsig, 2000),

zebras from stripe patterns (Lahiri, Tantipathananandh, Warungu,

Rubenstein, & Berger-Wolf, 2011), great white sharks from dorsal fin

shape (Hughes & Burghardt, 2015), and great apes from facial

characteristics (Ernst & Küblbeck, 2011; Loos & Ernst, 2012, 2013).

1.5 | Performance estimation

Assuming perfect ground truth labeling, the performance of automated

detection systems can be specified according to a binary classification

task. For the task of animal detection, for instance, detections can be

categorized into one of four classes: true positives (TP, a manually

observed animal is also detected by the software, true negatives (TN, no

animal is manually observed nor detected by the software), false

negatives (FN, an animal is manually observed, but not detected by the

software), false positives (FP, no animal is observed manually but

software generates a detection). The performance of the overall

detection softwarecan thenbecharacterizedby thesevalues.However,

performance statistics could also be reported by a combination of recall

and false alarm rates;where recall is theproportionof truedetectionsby

the software in relation to the total number of detectable events

(TP/(TP + FN)) and false alarm rate is the proportion of false detections

(FP/(FP + TN)) (Macmillan & Creelman, 2004).

1.6 | Novelty of study using face detection

Facedetection software, as a particular class of animal biometric detection

technology, is particularly promising for population assessment, analysis,

and conservation of great apes with potential for addressing further

parameters, as well as population and community ecology questions (Kühl

&Burghardt, 2013). To date, face detection software for animals has been

successfully tested under controlled conditions, or was tested based on

high-quality image and video datasets which were not gathered by using

remote camera devices as in our study (Loos & Ernst, 2012, 2013). To our

knowledge, no studies have successfully used face detection software

under completely unconstrained field conditions, andwe are not aware of

any studies that have directly compared the results of both manual and

face detection analyses of camera trap data from the field.

1.7 | Aims of study

In this study, we evaluate the applicability of previously developed

chimpanzee face detection software (Ernst & Küblbeck, 2011) to
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process field camera trap data. Our primary aim is to assess whether

using the software can improve efficiency of the time consuming

processing of camera trap footage.More specifically, we are interested

in quantifying the amount of time field biologists may save and the

expected accuracy of key parameter estimates when using the

software compared to purely manual processing. It is not the goal of

this study to assess the performance of the software as an object

recognition framework, this has been already done for high-quality

visual footage and the interested reader is referred to (Ernst &

Küblbeck, 2011) for a detailed evaluation. Here, we focus on

quantifying the software's effectiveness for the task of estimating

site-specific occurrences of chimpanzees (site occupancy) based on in-

frame animal presence/absence (Andresen, Everatt, & Somers, 2014;

MacKenzie et al., 2002, 2006). We note that this task is fundamentally

different compared to evaluating object recognition performance,

since neither accurate spatiotemporal localization nor scale informa-

tion—critical parameters in traditional performance estimates for

object recognition—retain their importance when focusing on

presence/absence information over large time windows only.

Our overall target parameter is site occupancy, that is, we want to

estimate the proportion of an area that is occupied or used by a species

during a season (MacKenzie et al., 2002). This measure is useful in

long-term monitoring programs because it can provide data to assess

population changes, site colonization, and extinction, site use, as well

as give insight into multi-species interactions and other ecological

parameters (MacKenzie et al., 2002; MacKenzie, Nichols, Hines,

Knutson, & Franklin, 2003).

1.8 | Summary of objectives

In summary, our objectives are: (1) to estimate the performance and

efficiency gain when using the face detection software to recognize

chimpanzee presence and absence under field conditions and (2) to

estimate site use by two chimpanzee communities from this data. We

compare the results of manual processing of camera trap footage with

various degrees of automated processing. Though we have chosen to

conduct our study on a small scale to test the face detection approach,

this approach and software is fit for use at a larger scale where it has

the potential to have the greatest benefit and impact of analyzing field

data.

2 | DESCRIPTION

2.1 | Analytical methods

2.1.1 | Manual video processing

All camera trap videoswerefirstmanually screened for the presence of

chimpanzees. Detections were also categorized into quality levels of

the underlying images (light conditions, chimpanzee distance from

camera, visibility time, and face and head positions; Figure 1). The

metadata was recorded together with date, time, and GPS location of

the capture.

2.1.2 | Face detection system

We used the face detection framework SHORE™ (Sophisticated High-

Speed Object Recognition Engine) (Ernst & Küblbeck, 2011; Loos,

2016) developed by the Fraunhofer Institute for Integrated Circuits

(IIS) trained to detect chimpanzees (Figure 2). A software license can

be requested from www.iis.fraunhofer.de. SHORE™ attempts real-

time detection and tracking of frontal primate faces in images and

videos. Although a detailed algorithmic description is published in

(Ernst & Küblbeck, 2011; Küblbeck & Ernst, 2006; Loos & Ernst, 2013),

here we present a high-level summary of its workings to provide the

basic technical context in which the study operates.

2.1.3 | General detection system

SHORE™ (Ernst & Küblbeck, 2011) builds on the key concepts of the

well-established object detection framework by Viola and Jones

(2001). SHORE™ utilizes a detection model comprising multiple

consecutive classification stages, through which image regions are

passing with increasing complexity along an attentional cascade (Viola

& Jones, 2001). In SHORE™, each stage comprises a feature extraction

step and a look-up table based classification step, where the classifier

is built offline using Real-AdaBoost (Schapire & Singer, 1999). Real-

time capability is achieved by using simple and fast pixel-based

features in early stages for a fast and coarse candidate search. Later

stages implement slower, but more accurate classifications.

2.1.4 | Visual features

Each stage utilizes one out of three illumination-invariant features:

edge orientation features, censusfeatures, or structure features. Edge

orientation features represent pixel-based gradient directions and are

extracted via Sobel operators. In subsequent classification stagesmore

complex census features (Zabih &Woodfill, 1994) are extracted, which

encode local brightness changes. In the final classification stages,

structure features, which are built out of scaled versions of census

features, are extracted on image regions.

2.1.5 | System training

Positive training data, that is, great ape faces, were used applying slight

random variations such as rotation, mirroring, and translation to increase

robustness of the classifier to be built. Non-face negative training data

weregeneratedby randomly croppingpatches from imageswithoutgreat

ape faces. Subsequently, further non-face data were gathered by

bootstrapping the initial model on images without ape faces.

2.1.6 | Face detection

During detection, the gray scaled input image is initially convolved

with a 3 × 3 mean filter kernel to compensate noise. While the

detection model is fixed with a size of 24 × 24 pixels, the mean filtered

image is downscaled multiple times using a scaling factor of 1.24 to

build an image pyramid. A real-time capable, coarse to fine search is

applied by shifting the detectionwindow across every pyramid level to

achieve scale invariance. Detections in multiple pyramid levels are

subsequently merged to a single detectionwithmean size and location

by applying non-maxima suppression.
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2.1.7 | Slicing and face tracking

As stated earlier, SHORE™ is not only capable of detecting faces in

single frames, but also to track them through a scene. Once a face has

been detected, a unique identifier is assigned to it. During consecutive

frames, the tracking algorithm then tries to maintain the association

between ID and face. The subsequent paragraph briefly reviews the

tracking algorithm used within SHORE™. For a more detailed

explanation the interested reader is referred to Küblbeck and Ernst

(2006). As described, the static detector repeatedly searches for faces

in all levels of an image pyramid in order to find faces of different sizes.

Assuming scale consistency of faces, it is sufficient to scan pyramid

levels only a few times per second. Therefore, the image pyramid is

partitioned into slices which are processed alternatingly. In practical

applications Küblbeck and Ernst (2006) observed a performance

FIGURE 1 Examples of snapshots from camera trap videos. TP indicate detectability by the face detection software, FN indicate non-
detection. 1) A–E: true positives from Budongo; 2) F–J: false negatives from Budongo; 3) K–O: true positives from Sapo; 4) P–T false
negatives from Sapo

FIGURE 2 Screenshots of face detection software “FaceDetect” interface. True detections: (A) true positive (TP), (B) true negative (TN);
false detections: (C) false negative (FN), (D) false positive (FP)
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improvement by a factor of two to three, depending on the number of

faces in the scene. A motion model is then applied to connect the

detections of subsequent frames. A linear Kalman filter (Kalman, 1960;

Welch & Bishop, 2006) is applied in order to estimate the current state

of a tracked face from the detection results. Additionally, the first and

second order derivatives are included in the state vector to represent

the velocity and the acceleration of a face. Association of object-ID

and detected face in consecutive frames is done by using a minimum

distance criterion: A detected face in the current frame is associated

with the face detected in the previous frame which is closest to the

current object position. It was shown in (Küblbeck & Ernst, 2006) that

based on the observations of past frames it can be decided if a tracked

object actually represents a valid face, which significantly reduces the

number of FP detections while the detection rate is maintained.

2.1.8 | Application of software

We used the face detection software SHORE™ to extract chimpanzee

occurrence from all video footage via R (version 3.0.2; R Development

Core Team, 2013; available online at: https://www.r-project.org). The

software was carefully trained by computer vision experts and the

detection score was selected based on evaluation on an entirely

different dataset.We included videos that did not contain chimpanzees

in the analysis. We did not modify the software provided by the

Fraunhofer Institute and recognize their contribution to our methodol-

ogy. The software provides detections of primate faces contained in

images and videos. Note that the software only detects chimpanzee

faces and not whole bodies, its ability to detect chimps in videos is

limited to videos where face views are visible. The software then

producesa scriptof codesandcoordinates asoutput for each respective

visual image processed. This contained the species detected (chimpan-

zeeorgorilla) andtheageclass (infant, juvenile, adult) foreach individual.

Additionally, for each frame where an individual was detected, the

output gave the probability of species and the most probable species,

the probability of each age class and themost probable age class, aswell

as positions of the face, eyes, and mouth.

2.1.9 | Setups and post-processing

Automated processing can lead to misclassifications, whose impact

can bias estimates for species occurrence and site occupancy

estimates (Andresen et al., 2014; MacKenzie & Royle, 2005;

MacKenzie et al., 2003). Choosing a suitable annotation procedure

and evaluation approach is therefore essential to rate software

performance appropriately (Mathias, Benenson, Pedersoli, & Van

Gool, 2014). To better understand software misclassification, but to

also account for the fact that we used software to detect faces and not

any body part of chimpanzees, we applied consecutive and

increasingly complex test steps after the manual and software

processing. In the first step, we rated detections made by the software

against all videos manually classified as containing at least one

chimpanzee (i.e., the full set of positives). Second, since the software is

based only on the detection of near-frontal faces and not bodies, we

only considered videos that contained at least one face view of a

chimpanzee (i.e., a subset of all positives). Post-processing then took

place in the third and fourth steps. In the third step, we aimed at

filtering out FP, that is, instances where the software responded to an

object other than a chimpanzee, such as a swinging branch or a point

on a tree (Figure 2). Since these false detections are usually stationary

objects (e.g., leaf or bark), their location estimates are stationary

compared to variable whenever chimpanzees move across the scene.

We calculated the cumulative distance between the detected face

locations in consecutive video frames and removed detections whose

cumulative distance was lower than 0.02 (i.e., 2% of the frame width).

This threshold was based on the inspection of true and FP

detections with the aim of minimizing the loss of true detections.

Lastly, in our fourth step, we only considered video clips where at least

one chimpanzee individual's face was in a frontal position (i.e., both

eyes facing the camera) and the associated detection was moving

over a detectable cumulative distance (i.e., greater than 2% of the

video size).

2.2 | Performance of face detection approach

We tested the performance of the software at three levels: (1) simple

presence/absence; (2) sightings versus time relation to detect

chimpanzees manually compared to automatically; and (3) occupancy

modeling.

1. Confirming presence/absence: We determined how often the face

detection software correctly recognizes chimpanzee presence and

absence (see Section 2.1). We then applied the four consecutive

processing steps and calculated the proportion of each detection

category.

2. Detection time: For both the manually and automatically processed

video data, we derived accumulation curves showing the cumula-

tive number of cameras with which chimpanzee presence was

confirmed as a function of time.

3. Occupancy modeling: We interpret the commonly used term

“occupied site” as a “site used by chimpanzees.” “Naïve occupancy”

is defined as the proportion of sites, where a species is present

within the surveyed period relative to all surveyed sites. To

estimate the number of sites used by chimpanzees at both

locations, we used a single-season model. We applied the “occu”

function from the “unmarked” package in R (Fiske & Chandler,

2011). This model estimates two parameters: (1) the probability

that a species is present within a site, that is, probability of

occupancy (Ψ); and (2) the probability that a species present is

detected within a site, that is, probability of detection (p). More

details about this model can be found in MacKenzie et al. (2006).

The model is based on four assumptions that need to be respected

to avoid any bias of estimators: (1) sites are closed; meaning that no

emigration and no immigration occurs during the study; (2)

probability of detection is constant across all sites and surveys or

is a function of site-survey covariates; (3) probability of occupancy

is constant across sites or is a function of covariates; and (4)

detection of species and detection histories at each location are

independent of one another (Fiske & Chandler, 2011; MacKenzie

et al., 2002, 2006). We divided the sampling period into sampling

occasions (SO) of 4 days each. We removed one of two sites close
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by, surveyed during the same time period and separated only by

approximately 50m and we removed sites with less than five

sampling occasions. We also combined close and consecutively

surveyed sites to avoid violating independence of detection among

sites. We took only the first ten SO per camera into account for

several reasons: first, the number of sites with more than ten SO

was low and thus the value of detection probability could be biased

and have lower precision; second, MacKenzie et al. (2002)

recommend at least six SO in order to obtain a relatively unbiased

occupancy probability; third, we limited the length of the study in

order to meet the assumption of site closure; lastly, ten SO

represent a total length of 40 days, a length compatible and

reasonable with field surveys.

Detection histories were compiled into a matrix containing four

different values: (0) when no detection occurred neither manually

nor by the software, that is, a true negative (TN); (1) when a TP

detection occurred, meaning that a chimpanzee was detected by the

software and confirmed manually; (2) when a FP occurred, meaning

that a chimpanzee detected by the software was not confirmed

manually; and (3) when a false negative (FN) occurred, meaning that

a chimpanzee detected manually was not recognized by the

software. When no survey was conducted during a SO (e.g., due

to camera malfunctioning), we assigned a value of N/A. In the case

where several videos with different classifications (i.e., FN, FP, TP)

occurred in the same sampling occasion, we prioritized classes as

follows: TP>FN>FP>TN. A FN leads to a loss of information and is

therefore more important than a FP, easily corrected to a TN when

watching the videos. For example, if during a sampling occasion both

a video without a chimpanzee but with a detection by the software

occurred and a video with a chimpanzee not detected by the

software occurred, the sampling occasion was classified as a FN. We

ran models for four datasets per site, respectively: the manual

dataset including all videos and three other datasets based on the

face recognition software output and the fourth processing level (i)

one with no manual cleaning; (ii) one in which FP were removed; and

(iii) one in which the proportional removal of FP and false negatives

was equal.

We developed an assessment study where we “cleaned” FP and

negative sampling occasions manually by 10% increments; “cleaned”

FP SO were transformed into TN SO, and “cleaned” FN SO were

transformed into TP SO. We ran 1,000 simulations to get occupancy

and detection probabilities for each assessment. We used the “plogis”

function in order to obtain the occupancy probability (Ψ) at the original

scale, with values between 0 and 1. A (0)means that the site is not used

by chimpanzees and a (1) means that the site is used by individuals.We

calculated the naïve occupancy by taking the number of sites where a

chimpanzee was at least once manually detected divided by the total

number of sites surveyed.

All analyses and graphs were carried out in R (version 3.0.2;

R Development Core Team, 2013; available online at: https://www.

r-project.org) and map was created in QGIS 2 (version 2.10.1 Pisa;

QGIS Development team, 2015; available online at: http://www.

qgis.org).

3 | EXAMPLE

All field research protocol was in compliance with the EU Commis-

sion's legislation for animals used for scientific purposes, and adhered

to the legal requirements in both Uganda and Liberia. All data

collection at Sapo was performed in accordance with government

regulations and approved by the Ministry of Agriculture in Liberia. It

adhered to the legal requirements of the Bundesamt für Naturschutz/

Federal Agency for Nature Conservation in Germany. Lastly, all field

methods and research adhered to the American Society of Primatol-

ogists Principles for Ethical Treatment of Non-Human Primates, as

well as the ethical guidelines established by the Max Planck Society.

3.1 | Study sites

The data used in this study were gathered from two research sites with

unhabituated chimpanzees as part of the Pan African Programme

(available online at: http://panafrican.eva.mpg.de/index.php). The first

site, the Budongo Conservation Field Station (henceforth Budongo), is

located in the Budongo Forest Reserve in Western Uganda and

comprises 428 km2 of continuous forest (Figure 3). The Budongo Forest

is amoist semi-deciduous tropical rain forest situated between 1°37′–2°
03′N and 31°22′–31°46′E and an average altitude of 1,100m (Eggeling,

1947; Plumptre, 1996). At the time of data collection, themeanmonthly

rainfall was 125 ± 87mm and mean minimum and maximum

temperatures per day were 16.4 ± 1.3°C and 31.5 ± 2.3°C, respectively

(K. Corogenes, unpublished data). The studywas conducted in the home

range of the unhabituated “Kamira” community living adjacent to two

habituated chimpanzee communities (“Sonso” and “Waibira”). No

information about this specific community has yet been published.

The second site is in Sapo National Park in Southwestern Liberia

(henceforthSapo), situatedbetween5°24′–5°50′Nand8°24′–52′Wand

comprises over 1,800 km2of tropical rain forest (Robinson&Peal, 1981).

At the time of data collection mean monthly rainfall was 211 ± 151mm

and mean minimum and maximum temperatures were 21.7 ± 1.5°C and

29.2 ± 3.1°C, respectively (V. Leinert, unpublished data). Around 1,500

chimpanzees are estimated to be in the park (Tweh et al., 2014).

3.2 | Camera trapping

We installed Bushnell Trophy Cam cameras at both sites, following a

standard protocol (available online at: http://panafrican.eva.mpg.de/

pdf/Pan_African_Field_Protocol.pdf). At Budongo, 18 high-resolution

cameras (“HR,” Bushnell Trophy Cam 2012model 119466; 720 × 1,080

resolution) were opportunistically placed in a 2 × 3 km2 grid between

July 2012 and March 2013 at 24 unique locations. At Sapo, 34 lower-

resolution cameras (“LR,” Bushnell Trophy Cam 2010 model 119435;

480 × 620 resolution) were placed at 172 unique locations between

January 2011 andMay 2012 in a 5 × 5 km2 grid. Cameraswere attached

to tree 1m above ground at sites where chimpanzee encounters were

likely, that is, feeding spots, natural bridges, and trails. Cameras were

triggered by movement, which activated a 60 s recording, followed by a

minimum1 s break before another recording. Cameraswere active 24 hr

a day and checked once amonth to change batteries andmemory cards.
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3.3 | Results

At Budongo, the field sampling effort consisted of 2,809 trap days with a

mean of 117 trap days per camera location. A total of 6,733 HR videos

were produced, of which 625 included sightings of chimpanzees (Pan

troglodytes schweinfurthii) (Table 1). The manual analysis found a total of

119 captured frontal face views of chimpanzees, with 110 videos

containing at least one frontal face view. In 190 videos, only body parts

of chimpanzees were visible. At Sapo, the field sampling effort consisted

of 8,365 trap days with a mean of 55.4 trap days per location. A total of

8,996 LR videos were captured. Of these videos, 279 contained

chimpanzee sightings, with 216 total frontal face views and 148 videos

with at least one frontal face view based on themanual analysis (Table 1).

3.4 | Performance of face detection approach

3.4.1 | Confirmation of presence/absence

In general, we found the same trend at both sites, though notablymore

pronounced for HR videos: as the post-processing level of comparison

increased, the number of false detections decreased and true

detections increased (Figure 4). In the second step, after considering

only videos containing chimpanzee face views as true detections, we

found that TP and FN classifications nearly halved, but as a whole the

total number of true detections (TP and TN) remains relatively

constant. In the third step, after removing the false detections, we

found that true classifications almost doubled and FPs decreased by

more than 90% for HR videos and more than 25% for LR data. Finally,

after the fourth level of assessment the rate of true detections (TP and

TN) was 97% for HR and 98% for LR. For HR, 25 of 110 videos

containing chimpanzees were not recognized as such (i.e., false

negatives), while for LR 82 of 148 videos were not recognized. Lastly,

the FP rate was at 3% and less than 1% for HR and LR, respectively.

3.4.2 | Detection time

We found that a majority of detections (>70%) occur in the first

40 days after camera establishment, when comparing manual and

automated detections with all chimpanzee videos (Figure 5). We also

found that after 100 days of sampling, the face recognition software

detected chimpanzees on only 50% of the cameras where a

chimpanzee was detected manually, because of lack of face views.

It is suggestive that chimpanzeeswalked in different directions and did

not show their faces as often and therefore were not detected by the

software.

3.4.3 | Occupancy modeling

With the method described above, we used a total of 21 sites at

Budongo and 100 sites at Sapo. Missing detections in tandem with

false detections introduced bias in site occupancy probability

estimates when using the LR dataset (Figure 6B), occupancy

probability was correctly estimated for the HR dataset (Figure 6A).

FIGURE 3 Location of the two Pan African Programme study sites in Liberia (Sapo) and Uganda (Budongo) and their respective research
grids. Cameras were placed opportunistically throughout grids at both sites

TABLE 1 Number of videos and the percentage of chimpanzee
videos where chimpanzee faces were or were not in frontal view of
camera, and number of individual chimpanzees in videos for each site

Videos Individual chimpanzees

Budongo

Frontal face views 110 (18%) 119

No frontal face views 515 (82%) 757

Total 625 876

Sapo

Frontal face views 148 (53%) 216

No frontal face views 131 (47%) 397

Total 279 613
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Cleaning only FP in the case of the LR dataset, does not seem to be

accurate. However, balancing the removal of FP and negatives seem to

be better. When 100% of FP and 50% of false negatives are cleaned,

occupancy estimates are similar to those of the manual dataset and

have estimates within the standard error interval of the manual value

(Figure 6).

4 | COMPARISON AND CRITIQUE

Through a combination of manual and face detection approaches to

evaluate occurrence, we have found that in its current advanced stage

of development, face detection software (“FaceDetect”) is useful and

indeed promising for use in the field when looking to determine

chimpanzee occurrence. Our key goals that we demonstrated were to

show that the software can be successfully used to simply detect

presence–absence of chimpanzees in camera trap footage, can be

used for site occupancy modeling and most importantly can speed up

the process for analyzing field survey data by reducing the required

time by up to 96–98%. Currently, a critical limitation is that video clips

need to contain face views for detection when chimpanzees are

present. However, we think that this issue can be easily overcome on

the level of field data collection until full body detection software is

available. Sets of high-resolution cameras can be placed in reverse

directions at the same location that is surveyed for chimpanzee

FIGURE 4 Software detection results for all videos at each of the four processing steps for Budongo data set (A) and Sapo data set (B). FN,
false negative; FP, false positive; TN, true negative; TP, true positive

FIGURE 5 Time required to detect a chimpanzee on “x” number of cameras for Budongo data set (A) and Sapo data set (B)
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occurrence. Such approach should reduce non-detectability of

chimpanzees due to lack of face views to an acceptable minimum.

In essence combining camera trapping and semi-automated process-

ing of footage will permit to conduct chimpanzee occupancy surveys

routinely in an efficient manner.

4.1 | Evaluation of face detection approach

The face detection software detected videos containing chimpanzee

frontal face views with an acceptable low rate of FP. However, we

found that datasets had a large difference from one another: a

detection rate of 77% and about 45% at fixed alarm rates of 2.8% and

0.8%, respectively (Table 2). It is almost certain that this difference is

due to camera placements that lead to occlusion of chimpanzee faces,

and to differences in video resolution used at both sites. The face

recognition software was developed using high quality videos with a

resolution of 1,280 × 1,024, where visual images were pre-selected

and then run through the software for recognition (Ernst & Küblbeck,

2011). However, videos from camera traps can be of poorer quality

due to lower-resolution, weather, and exposure to the elements.

Differences in resolution may thus lead to different analysis of results:

HR videos (720 × 1,080, Budongo) had a higher recall rate, while LR

videos (480 × 620, Sapo) had a lower recall rate. Our rate of false alarm

of software detections in the last assessment was 2.8% for HR

(Budongo) and 0.8% for LR (Sapo) data. This is comparable to similar

studieswhich analyzed high quality images of chimpanzees and gorillas

with face detection algorithms (Ernst & Küblbeck, 2011), but is lower

than others that have looked at other species such as penguins (e.g.,

Sherley, Burghardt, Barham, Campbell, & Cuthill, 2010). In these

studies, as in ours, video quality plays a large role in the ability,

accuracy, and precision of species detection in data, and we stress the

use of quality to improve results.

Time saving is undoubtedly the strongest argument for using face

recognition software when comparing manual and automated

methods. For example, from the 6733 HR videos (Budongo) we

started with, we would only need to check the 285 videos classified as

positive detections by the face detection software, and of the 8,996 LR

videos (Sapo) we started with, we would only need to check the 140

videos classified as positive detections, leaving aside for a moment the

condition that chimpanzee presence can only be detected when their

faces are visible. This results in a drastic decrease of 95.8% and 98.4%

of videos to watch, respectively. When considering that, about 3min/

video is needed to manually check for chimpanzee presence (time to

open, start, and watch the video, and note comments in a sheet), then

an estimated 337 hr are necessary to derive chimpanzee occurrence

for the 6,733 HR videos (Budongo). However, in the semi-automated

assessment, only 285 videoswould need to be reviewed, and thus only

about 14.3 hr are necessary to obtain occurrence information—a stark

difference of 322.7 hr.

In our last argument, we address the aspect of false negatives and

positives. For HR data (Budongo), we found that false negative

detections were not a significant issue and relatively little information

was lost; only 25 videos containing frontal face views were not

detected. LR data (Sapo) had a much higher number of false negatives.

Again, non-detections or false negative detections are likely due to

poor resolution or occlusion. Additionally, although FP detections

could bias the occurrence analysis when only relying on the face

detection software, they can be overcome by manually checking

the reduced dataset. Thus, we conclude that after post-processing the

face detection software performs well for detection, especially under

the necessity that individuals must look directly in the camera and

show their faces in order to be detected (see guidelines for field

practitioners).

FIGURE 6 Occupancy probability (Ψ) derived from false positive and false negative cleaning simulations and transformed by the “plogis”
function (Budongo (A) and Sapo (B)). Gray lines represent the SE obtained by the “plogis” function. Green points represent the non-cleaned
dataset, the red points represent the manual dataset (fully cleaned dataset), and the blue points represent an optimum level of cleaning

TABLE 2 Results of the last level of assessment (step 4) of the face
detection software: automated analysis detected a majority of videos
where chimpanzees were present as found by the manual analysis

Confirmed by manual analyses

Automated analyses Recall False alarm

Budongo 85/110 (77%) 187/6623 (2.8%)

Sapo 66/148 (45%) 74/8848 (0.8%)

Recall is the proportion of detections by the software in relation to the total
number of detectable events (TP/(TP + FN)) and false alarm rate is the
proportion of false detections (FP/(FP + TN)).
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The fact that chimpanzees were detected either relatively quickly

by the face detection software in camera trap footage or not at all is

not a byproduct of overfitting the detection model, as the software

was trained on a completely different dataset. Rather it is more likely

that the positioning of cameras differed, which led to a higher or lower

chance of recording chimpanzee face views.

4.2 | Site occupancy modeling

Site occupancy modeling in conjunction with camera trapping can

assess the presence of animals. We are aware that cameras were

implemented within a small area in the chimpanzee territories and

were opportunistically placed. Nevertheless, we know from long-term

observations that chimpanzees do not use every part of their territory.

We therefore interpret the estimated site occupancy as the used sites.

Opportunistic camera placements should not be problematic if we

consider only the animal populations within the area we sampled and

not the greater region (Bengsen, Leung, Lapidge, & Gordon, 2011).

Alternatively, the opportunistic camera placement we used can be

replaced by a completely systematic design of camera placement

across larger areas.

4.3 | Guidelines for field practitioners

Tomaximize reliability of results, we recommend using high-resolution

cameras to maximize the detectability by the face detection software.

At least two cameras should be installed facing opposite directions at

the site of interest to increase the chance of capturing individual faces.

We also suggest that before implementing a study, simulation studies

should be carried out to determine the prerequisites for robust

estimates (Foster & Harmsen, 2012), minimum sampling effort (i.e.,

number of cameras), minimum sample area, and minimum sample size

(i.e., number of individuals). Furthermore, for large scale studies

cameras can be placed systematically, which would help meet the

assumptions of occupancy modeling and reduce time to find suitable

locations. Together, these aspects will increase result reliability and

encourage the use of camera trapping in the field as part of an

innovative and effective research approach.

In recent years, despite great strides in technology, many have

been cautious of using face detection software to process field data,

and have continued to rely arduously on human eye and hand. Yet the

arguments for and benefits of using advanced software for data

processing are growing and are increasingly hard to ignore. Here, we

have demonstrated that the presence and absence of a species within

an area can robustly be determined from the face detection software

after post-processing video field datasets. We suggest that the time-

saving benefits from the software outweigh the FP detections that

may result. Additionally, the long-term goal of this software

employment will be to do individual recognition in order to obtain

detailed demographic information on communities and populations.

We encourage the use of face detection and recognition software

when looking to process large amounts of field data, when on a tight

time schedule, and when strapped for skilled or trained human

resources. As camera trapping becomes increasingly popular among

conservation and community ecologists and researchers, this non-

invasive method combined with a semi-automated face detection

processing approach shows great potential for population surveys.
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