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ABSTRACT Genetic capture-recapture (CR) estimates of population size have potential for aiding the
conservation and management of rare or elusive animals. To date, few studies have explored the performance
of genetic CR estimates by implementing them in a population of known size.We evaluated the accuracy and
precision of genetic CR estimates by genotyping fecal samples collected opportunistically over the territory of
a well-studied group of approximately 190 previously identified and genotyped eastern chimpanzees (Pan
troglodytes schweinfurthii) in Kibale National Park, Uganda. We compared the performance of genetic CR
estimates based on 3-month and 3-year sampling periods to explore the impact of lengthened sample periods,
which are expected to increase accuracy and precision of estimates but also increase the chances of violating
population closure assumptions. We compared the effects of using spatial and non-spatial models and equal
or heterogeneous detection probabilities upon estimates. Over the 3-year period, we detected 54% of the
group members and produced population size estimates with more accuracy and narrower confidence
intervals than the 3-month sampling period. The population remained effectively closed over the 3 years and
detection heterogeneity was linked to age but not sex. Non-spatial methods estimated group size more
accurately than spatially explicit methods, which had a stronger tendency to underestimate population size.
This study suggests that genetic CRmay produce accurate and precise population size estimates if substantial
effort is allocated to sample collection and genotyping. � 2016 The Wildlife Society.

KEY WORDS capwire, genetic census, genotyping, microsatellites, Pan troglodytes, population size estimators,
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Reliably estimating the size of an animal population, and
detecting changes in population size over time, are essential
for assessing a population’s conservation status and the
effectiveness of protective measures. The difficulty or
inadvisability of capturing and marking individuals in certain
species led to the increasing application of genetic capture-
recapture (CR) approaches to estimate population size using
individually distinctive multilocus genotypes derived from
non-invasively collected source material including shed hair,
feathers, and feces (e.g., elephants [Loxodonta cyclotis], Eggert
et al. 2003, bears [Ursus arctos], Bellemain et al. 2005, wolves
[Canis lupus], Caniglia et al. 2011). Although a number of
increasingly sophisticated genetic CR models are available to
estimate population size, all models depend on a set of
assumptions, and the extent to which these assumptions are

met with empirical data from the wild will determine the
model’s performance. Simulations of genetic CR estimates
have investigated the effect of violating models’ assumptions
on the estimates (Miller et al. 2005, Petit and Vali�ere 2006,
Efford 2011, Blanc et al. 2013), but the extent to which
assumptions are violated in natural conditions, and the
magnitude of any resulting biases, is largely unknown.
Empirical evaluations of CR population size estimates using
natural populations have been limited to comparisons with
estimates of population size derived from other methods
(e.g., min. population size [Bellemain et al. 2005], transects
[Zhan et al. 2006, Arandjelovic et al. 2010], visual count
[Puechmaille and Petit 2007], tracking [H�ajkov�a et al. 2009],
camera-traps [Jane�cka et al. 2011], trapping sessions [Gerber
and Parmenter 2014]). However, the use of such comparisons
is limited if these other methods are themselves imprecise
(Bellemain et al. 2005, Puechmaille and Petit 2007, Stenglein
et al. 2010, Gerber and Parmenter 2014).
Wild great apes, including chimpanzees (Pan troglodytes),

gorillas (Gorilla spp.), orangutans (Pongo spp.), and bonobos
(Pan paniscus), are typically wary of humans and occur at low
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density. These features, in combination with their endan-
gered status (International Union for the Conservation of
Nature 2008), make the use of indirect population size
estimation methods (e.g., genetic CR) useful to avoid direct
contact and possible disturbance of social behaviors.
Population size estimates for great apes have traditionally
been based on counts of signs of individual presence (e.g.,
nests built each night for sleeping; McNeilage et al. 2006,
Kouakou et al. 2009). But recent studies have reported that
estimates based on such data have such low precision that
they may detect only very dramatic changes in population
size (Wanyama et al. 2010, Piel et al. 2015). There is some
evidence that genetic CR gives more precise estimates of
great ape population size than do traditional ape census
methods, but the accuracy of the genetic CR results and the
best manner of implementing such studies are unclear
(Arandjelovic et al. 2010, 2011; Chancellor et al. 2012;
Moore and Vigilant 2014; Roy et al. 2014; McCarthy et al.
2015). A challenge in estimating population size with genetic
CR is how to model the heterogeneous detection probabili-
ties among individuals. Although researchers often consider
how detection heterogeneity may be influenced by factors
including age and sex, the true detection probabilities remain
unknown. Statistical tests are routinely implemented to
determine the best fitting model, but validation studies using
known populations are lacking.
In Kibale National Park, Uganda, members of the Ngogo

group of eastern chimpanzees (Pan troglodytes schweinfurthii)
have been individually recognized and studied for years,
making the population size and age and sex composition
during the sampling period precisely known. Chimpanzees
have a fission-fusion social system,whereby all of themembers
of a group (termed community in the primatological literature;
Sugiyama and Koman 1979) are never found in the same place
at the same time but instead associate in temporary parties that
vary in size, duration, and composition. Especially in the east
African chimpanzee subspecies considered here, adult males
tend to associate in larger parties than do adult females (Gilby
and Wrangham 2008, Langergraber et al. 2009). The easier
detection of multiple than lone fecal samples may lead to a sex
difference indetectionprobabilities.Agemay also createbiases
in detection probabilities in great apes, as previous studies on
paternity and behavior reported that fecal samples from
individuals�3yearsoldaredifficult toobtainevenwith intense
research effort involving direct observations of habituated
individuals (Vigilant et al. 2001, Inoue et al. 2008,Wroblewski
et al. 2009, Langergraber et al. 2013).
Our objective was to evaluate the performance of several

commonly employed genetic CR methods by using them to
estimate the number of individuals present in a group of
chimpanzees in Kibale National Park, Uganda. Using data
collected over a 3-month and a 3-year sampling period, we
compared the accuracy and precision of 3 different types of
CR methods of population size estimation, including 1 non-
spatial Bayesian model (Petit and Vali�ere 2006, Arandjelovic
et al. 2010), 3 non-spatial maximum likelihood (ML)models
(Miller et al. 2005), and 5 spatially explicit capture-recapture
(SECR) maximum likelihood models (Efford 2011). The

Bayesian model, 1 non-spatial ML model, and 2 spatially
explicit models assume equal detection probability. The 5
other ML models, both non-spatial and spatially explicit,
assume detection heterogeneity, and 1 of these models
specifically assumes sex-dependent detection heterogeneity.
Because we predicted male-biased and age-dependent

detection probabilities, we expected underestimation of the
population size from the 4 equal-detection models (Miller
et al. 2005, Efford 2011). We also expected SECRmodels to
underestimate population size because SECR considers
individuals sampled at low frequency and at the edge of the
sampling area to have their home range center outside the
sampling area instead of belonging to the study population,
whereas our sampling area corresponded exactly to the home
range (territory) of this chimpanzee group. We expected the
population to have membership changes over 3 years but not
3 months; thus, we expected overestimation of population
size for the 3-year sampling period. Alternatively, we
predicted the 3-year sampling period could produce more
accurate and precise population size estimates because the
longer sampling period would likely provide an increased
number of detections.

STUDY AREA

Weused samples collected from 2011 to 2013 in the 35.2-km2

territory of the Ngogo group of chimpanzees, located in the
795-km2 Kibale National Park of southwestern Uganda
(Fig. 1). The territory of the Ngogo chimpanzee group was
surroundedon all sides by neighboringgroups of chimpanzees.
The Ngogo territory is at 1,400–1,470m in altitude and
typically experiences about1,500mmof annual rainfall,mostly
duringMarch toMay and September toDecember. Kibale lies
at the intersection ofmontane and lowland rainforest and has a
temperate climate (range¼ 16–238C). The Ngogo chimpan-
zees predominately use old-growth forest in an area that also

Figure 1. Sampling area in Kibale National Park (N. P.), Uganda. Lines
represent trails in the Ngogo territory, circles and triangles represent
chimpanzee fecal samples collected during the 3-month (2012) and 3-year
(2011–2013) sampling periods, respectively. Stars represent the 2 locations
where samples from 3 chimpanzees belonging to non-Ngogo groups were
collected.
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includes colonizing forest regenerated from anthropogenic
grassland (Lwanga 2003).

METHODS

This research was reviewed by the Institutional Animal Care
and Use Committee (IACUC) of Boston University and
deemed not to require official IACUC approval due to it
consisting only of non-invasive behavioral observations and
sample collection. This research was reviewed and approved
by the Uganda Wildlife Authority and Uganda National
Council of Science and Technology to meet all animal
welfare laws of the country in which data collection occurred
(Uganda).

Known Group Size and Composition
The Ngogo group has been the subject of year-round,
continuous study since 1995 (Watts 2012). All individuals
are individually identified, named, and habituated to close
(5–10m) observation by researchers. The group is monitored
on a daily basis by 2–3 local Ugandan field assistants who
conduct focal followsof individuals (Altmann1974) from0700
to 1600. At 15-minute intervals they record the identities of
known, previously identified individuals, and newly identified
individuals (i.e., births and females that have immigrated into
the community) that are associating in the same party as the
focal individual. If the presence of a known, identified
individual has not been recorded for 3 months, we consider
them to have left the community (i.e., either by death or for
�13-yr-old females, by emigration) on the day after they were
last observed. The majority of individuals are observed �1
time/month, allowing accurate determination of group size at
any given point in time.
Age classes are defined as infants (from birth to 5 yr),

juveniles (5 yr to adolescence), adolescent females (first
appearance at �10 yr of an anogenital sexual swelling
associated with increased fertility, until first birth), adoles-
cent males (having descended testes, which typically occurs at
10 yr, until 16 yr), adult females (having given birth, which
typically occurs around 15 yr), and adult males (�16 yr). For
this study, we used the ages of individuals as of 1 June of the
relevant year(s).

Sampling Design
We collected fecal samples along an extensive grid-like trail
system that was slightly larger (47.1 km2) than the territory of
the Ngogo group (Fig. 1). One intensive sampling period of
3 months was extended by prior and subsequent opportunistic
sampling to create a sampling period of 3 years. For the
3-month sampling period, each daywe collected samples from
a predetermined route along the trails with a north-south
orientation. We began our sampling routes with the
easternmost north-south trail and moved steadily west until
all north-south trails hadbeen included inour sampling routes.
We then conducted sampling routes along west-east trails and
trails with an irregular, non-grid-like directionality, in the
areas of the trail system where north-south trails were absent.
Our sampling routes were thus evenly distributed over the
entire territory and predetermined rather than influenced by
the daily locations of chimpanzees. Our sample collection

routes during the 3-month sampling period totaled 293.4 km
and covered an average of 9.8 km/day (range¼ 0.1–19.5 km).
We collected 368 fecal samples on 30 days between 2 February
and 27 May 2012.
The 3-year sampling period (5 Jan 2011–8 Aug 2013)

encompassed the 3-month period and included an additional
85 samples collected opportunistically by a 3-person team
whose main focus was to search the Ngogo territory for
illegal hunting snares. These samples were all collected from
the same area as in the 3-month sampling period but were
not as evenly distributed, with relatively more samples
collected from the edges of the Ngogo territory where
hunting snares are more likely to be found (Fig. 1).
We employed the ethanol-silica 2-step fecal sample

collection and storage procedure described in Nsubuga
et al. (2004). Briefly, we immersed a small pellet (�5 g) of
fecal material in 30mL 95% ethanol. After about 24 hours,
we transferred the pellet into a 50-mL tube filled with
desiccating silica beads. We collected only samples estimated
to be<3 days old based on shape, color, and desiccation. We
stored samples in silica at room temperature for up to
6 months until they reached the lab, where they were stored
at 48C and used for DNA extraction after 2 weeks to 3 years.

Sample Extraction and Amplification
We extracted DNA from samples using the QIAamp DNA
Stool Mini Kit (QIAGEN, Hilden, Germany) with slight
modifications of the manufacturer’s protocol (Nsubuga et al.
2004) and stored extracts at �188C. For each extract we
amplified the amelogenin locus on the sex chromosomes in 4
replicates for sex determination using polymerase chain
reaction (PCR) methods following Bradley et al. (2001).
Because we expected some proportion of extracts to contain
little or no amplifiable amounts of DNA, we did not further
use extracts that failed 4 attempts at amplification of the
amelogenin locus.
We next simultaneously amplified each usable extract in

triplicate at 19 autosomal microsatellite loci following the
first step of a 2-step multiplex PCR method described in
detail elsewhere (Arandjelovic et al. 2009). This first
multiplex reaction mix contained 10mL of Type-itMultiplex
PCRMaster Mix1 (QIAGEN), 0.15mM of each forward
and reverse primer for all of the 19 loci, 3.86mL of water, and
5mL of template DNA for a total volume of 20mL. Instead
of subsequently amplifying each locus separately as in
Arandjelovic et al. (2009), we re-amplified a subset of 12 of
the 19 loci in 3 smaller multiplex PCRs containing 4 loci
each, using 2.5mL of 1:100 diluted first-step multiplex
product as template DNA, 5mL Multiplex PCRMaster
Mix1 (QIAGEN), 0.15–0.35mM primer, and 0.5–2mL
water for a volume of 10mL (Tables S1 and S2, available
online in Supporting Information).

Genotyping and Identity Analysis
We electrophoresed products from the amelogenin PCR and
the 3 sets of second-step multiplex PCRs in an ABI PRISM
3130XL Genetic Analyzer and scored allele sizes with the
software GENEMAPPER version 3.7 (Applied Biosystems,
Foster City, CA) using HD400 size standard. We required
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that alleles inheterozygous genotypeswere eachobserved from
a minimum of 2 replicate PCRs. We compared the rate of
allelic dropout at confirmed heterozygous loci to the
concentration of respective DNA extracts as inferred using
SYBR1Green I quantitative PCR (ThermoFisher Scientific,
Waltham,MA,USA) at the c-mycExon3 locus on Stratagene
MxPro3005P in 25-mL volume containing 1mL of template
DNA, 0.75mL of forward and reverse primers, 12.5mL of
Maxima1 SYBR Green qPCRMaster Mix (2X), and 10mL
of ultrapure water. This suggested that 4 and 2 replicates were
sufficient for extracts under and above 30 pg/mL, respectively,
to confirm a homozygote genotype with 99% certainty. We
discarded genotypes from 40 extracted samples that produced
genotypes at�3 loci.We conducted additional genotyping on
the remaining samples as needed to achieve validated
homozygous genotypes.We next used the programCERVUS
(Kalinowski et al. 2007) to determine that a minimum of 8
matching loci between 2 samples was required for the
probability of identity for siblings (PIDsib) to be <0.001
(Waits et al. 2001). Thus, we used only sample extracts that
were successfully typed at a minimum of 8 loci for subsequent
analyses. We then compared all multilocus genotypes to one
another using the identity function in CERVUS and gave a
unique identification (ID) to matching genotypes. We re-
examined genotypes of samples mismatching at �4 loci to
check for genotyping errors and as recommended performed
re-genotyping when genotypes mismatched at just 1 or 2 loci
(Kalinowski et al. 2006,Arandjelovic et al. 2009). This process
clarified all putative mismatches, and all genotypes that
we classified as representing different individuals differed at
�5 loci.
A unique multilocus microsatellite genotype generated in

the same laboratory using the same loci is available for each
habituated individual from previous genetics research on the
Ngogo group (Langergraber et al. 2007, 2009, 2011, 2013).
After constructing our final list of individual genotypes, we
used again the identity function in CERVUS to findmatches
with genotypes fromNgogo individuals whose ages and sexes
were known from long-term observational research.
We considered matching genotypes from samples collected

on the same day within 50m to be multiple piles of a single-
occasion deposit by an individual and therefore did not
represent independent redetections (Miller et al. 2005). We
constructed a consensus genotype using DNA from these
multiple samples but afterwards removed all but 1 sample
from the dataset to represent it as a single detection event.
We defined the sampling intensity for each sampling period
as the number of genotyped samples/number of unique
individuals (Miller et al. 2005).

Detection Probabilities
Weconsidered thefirst appearance of a unique genotype as the
detection of an individual, and every subsequent appearance as
redetections. We tested for the effects of age and sex on
detection probability with a generalized linear model (GLM)
in R (version 3.1.2, www.r-project.org). We modeled the
binomial response (i.e., detected yes or no) with a binomial
error structure and logit link function (McCullagh andNelder

1989). We tested the significance of the full model with a
likelihood ratio test (LRT; Dobson and Barnett 2008) by
comparing it with a null model containing only the intercept.
To test for an interactionbetween sex andage,weusedanLRT
tocompare thedevianceof the fullmodelwith that of a reduced
model with the interaction term removed. To test for a non-
linear effect of age,weused anLRTto compare thedevianceof
models with and without the squared age term.
We tested the assumption that detection probability is

equal to redetection probability for members of different age
classes and members of different sexes using repeated
random sampling with replacement in R. For each sex and
age category (i.e., infants, juveniles, adolescents, and adults),
we randomly sampled as many samples from the known
population as we collected during the study (e.g., if we
collected 24 samples from adolescents, we selected 24
random samples from the adolescent population present at
the time of sampling, 1,000 times). We then examined
whether the proportion of redetections in our samples was
significantly different from that expected by chance.

Population Size Estimation
WeusedBayesian andMLmethods to estimate the number of
individuals in the Ngogo group, assuming 1) demographic
populationclosure (i.e., nodeaths, births, ormigrations) and2)
detection probability (i.e., proportion of individuals detected
fromthe total population) equal to redetectionprobability (i.e.,
proportion of individuals detected more than once from the
sampled population). Both the Bayesian credible intervals and
theML confidence intervals are hereafter abbreviated CI.We
used 9 models (Table 1) described below.
For the Bayesian model, we used a sequential Bayesian

algorithmwritten by Arandjelovic et al. (2010) based on Petit
and Vali�ere (2006) and implemented in R. We implemented
the non-spatial ML models using the R package capwire
(Miller et al. 2005, Pennell et al. 2013), which computes 3
ML models (equal capture model [ECM], two innate rates
model [TIRM], and partitioned TIRM [TIRMpart]) to
estimate population size (Table 1). Like the Bayesian model,
the ECM assumes equal detection probability. The TIRM
assumes 2 categories of individuals, with either low or high
detection probability (Table 1). We used an LRT in capwire
to compare the goodness-of-fit of ECM and TIRM to the
data. We considered the null model (i.e., equal detection
probability, ECM) rejected when the likelihood ratio (LR)
<0.1 rather than LR <0.05 because this test is often
insensitive (Miller et al. 2005, Puechmaille and Petit 2007).
We used the data partitioning (Pennell et al. 2013) function
of capwire to split the data into 3 detection probabilities. If
partitioning is statistically supported (P< 0.05), the data
violate the TIRM’s assumption of 2 detection probabilities.
Therefore, the third model, TIRMpart, applies the TIRM
on a partitioned dataset excluding any individual detected a
large number of times. The number of excluded individuals is
then added to this partitioned estimate to obtain the final
TIRMpart estimate.
For spatially explicit models, we used an ML method that

accounts for spatial heterogeneity of detection in density
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estimations (SECR; Borchers and Efford 2008, Efford 2011)
and implemented it in the R package secr (version 2.9.5).
The SECR method assumes that each individual in the
populationhas a circularhome range,whichmaybe centered in
or outside the sampling area, and estimates the location of
individuals’ home range centers, assuming that the density
follows ahomogeneousPoissondistribution.Theassumptions
of homogeneous Poisson distribution and home range centers
located outside the sampling area were unlikely to be met
becausewe restrictedour sampling to theknownhomerangeof
the Ngogo group. We set the buffer (i.e., distance outside the
sampling area in which sampled individuals may have their
home range center) at 5 km, which is more applicable for
chimpanzees than the default 100m (Efford 2011,Moore and
Vigilant 2014). Models SE1 and SE2 (comparable to ECM
and TIRM, respectively) assume 1 or 2 detection probabilities
among individuals. Models SE3, SE4, and SE5 allow for sex-
dependent densities, which is suitable for chimpanzees
considering their female-biased sex-ratio (Nishida et al.
2003), and only SE5 allows for variation in detection
probability by sex (Table 1). We determined the statistical
support for each SECR model using Akaike’s Information
Criterion corrected for small sample size (AICc) and
considered a model to be supported when DAICc< 2
(Burnham and Anderson 2002). Finally, we multiplied the
density estimate (individuals/km2) by the searched area
(47.11 km2) to obtain an estimate of the population size.
For each of the 9 models discussed above, we compared the

point estimates to the true number of chimpanzees in the
Ngogo group at the time of sampling and described their
performance using 3 criteria: 1) accuracy, defined as the extent
of bias (either positive or negative) from the true population
size; 2) relative CI width (CI width/population estimate); and
3)whether theCI included the truepopulation size.Finally,we
examined whether the statistically best fitting models within
Capwire and SECR also were the most accurate.

RESULTS

Known Group Size and Composition
During the 3-month sample collection period, the Ngogo
population consisted of 189 individuals, including 34 adult
males, 59 adult females, 15 adolescent males, 20 adolescent
females, 21 juveniles, and 40 infants. Two of the 40 infants
were born during this sampling period. A third infant was

born but died within 2 weeks and was therefore not included
in the true population size for this study. One adolescent
female immigrated from a neighboring group into the Ngogo
group, but no emigrations out of the Ngogo group or any
deaths occurred during this sampling period. The population
size was 189 for the majority of the 3-month period (75 of
115 days), varied by only 0.02% during this time, and was
therefore considered demographically closed.
During the3-year samplingperiod, 26 infantswere born (not

including the one that was born and died within 2 weeks),
2 individuals died (1 adult F and1 infant), 4 adolescent females
immigrated into Ngogo from another group, and 1 adolescent
female emigrated fromNgogo. The population size on 1 June
was 173 in 2011, 190 in 2012, and 195 in 2013. This
represented a 12.7% increase from 2011 to 2013. Thus, the
population was not demographically closed during the 3-year
sampling period.We considered the true population size to be
186 for the 3-year sampling period, which is the average of the
3 yearly population sizes.

Genotyping and Identity Analysis
Of the 368 samples collected during the 3-month sampling
period, we genotyped 144 (39.1%) samples at the minimum 8
loci required to differentiate individuals with high confi-
dence (PIDsib< 0.001). Thirteen of these genotypes matched
genotypes from other samples collected within 50m on the
same day, and hence represented multiple single-occasion
deposits by an individual that we consequently removed from
the dataset because they did not represent true redetections.
The final sample size was therefore 131 genotyped samples
representing 77 individuals (i.e., 75 genotypes from 38M
and 56 genotypes from 39 F), for a sampling intensity (�x no.
observations/sampled individual) of 1.7 with unique geno-
types sampled 1–7 times.
We attributed 96% (n¼ 74) of these genotypes to known

individuals from the Ngogo group. Three female genotypes,
which all came from samples collected toward the edges of
the Ngogo territory (i.e., 1 in the west and 2 in the same
location in the northeast; Fig. 1), did not match the genotype
of any Ngogo chimpanzee but did match genotypes from
chimpanzees belonging to neighboring groups (data not
shown), making the true population size in our sampling area
slightly larger than the number of Ngogo group members.
The increase of the sampling period from 3 months to

3 years added 73 genotyped samples corresponding to 49

Table 1. Models used for chimpanzee population size estimates in Kibale National Park, Uganda, 2011–2013.

Model Typea Spatially explicit Assumptions

BS Bayesian No Equal detection probability
ECM ML No Equal detection probability
TIRM ML No Two detection probabilities
TIRMpart ML No Three detection probabilities
SE1 ML Yes Constant density, equal detection probability
SE2 ML Yes Constant density, 2 detection probabilities
SE3 ML Yes Sex-dependent density, equal detection probability
SE4 ML Yes Sex-dependent density, 2 detection probabilities for each sex
SE5 ML Yes Sex-dependent density and detection probability

a ML¼maximum likelihood.
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individuals, which all matched Ngogo group members and
included 22 that were not sampled during the 3-month
period. Thus, the 3-year sampling period included 204
genotyped samples derived from 104 individuals. The
sampling intensity in the 3-year sampling period was 2.0,
with unique genotypes sampled 1–10 times. We detected
54% (n¼ 101) of the population members over the 3 years.

Detection Probabilities by Age Class and Sex
We detected 39.1% (n¼ 74) of the 189 individuals present
during the 3-month sampling period. The 74 detected
individuals included 7.5% (n¼ 3) of the infants, 23.8%
(n¼ 5) of the juveniles, 42.9% (n¼ 15) of the adolescents, and
54.3% (n¼ 51) of the adults. Chronological age had a
significant quadratic effect on detection probability, with
infants and old individuals having low detection probability
(LRT: x2

1 ¼ 17.9, P< 0.001; Fig. 2; Table S3, available online
in Supporting Information). Although more males (43.9%,
n¼ 36) were detected than females (35.9%, n¼ 38), detection
probability did not significantly differ by sex (LRT: x2

1 ¼ 3.2,
P¼ 0.07; Fig. 2 and Table S3). The interaction between age
and sex was not significant (LRT¼x2

1 ¼ 0.01, P¼ 0.9).
The proportion of detections to redetections in the dataset

was not significantly different from the random simulations
among age categories (random sampling simulations: infants:
P¼ 1.00, juveniles: P¼ 1.00, adolescents: P¼ 0.95, adults:
P¼ 0.99) or by sex (F: P¼ 0.94, M: P¼ 0.82), thereby
meeting this assumption of CR models.

Population Size Estimation: 3-Month Sampling Period
Underestimation of the true population size was more
frequent (7 of 9 models) than overestimation (Fig. 3 and
Table 2). The most accurate model was TIRMpart, with an
estimate of 180 individuals that was quite close to the true
population size (189). We found TIRM was supported over
ECM (LR¼ 27.34, P¼ 0.02) and TIRMpart over TIRM
(P< 0.001). Approximately half (5 of 9) of the models had
CIs that contained the true population size, and all of the
models with CIs excluding the true number of individuals

underestimated the true population size (Table 2). The
widths of the CIs relative to the point estimate ranged from
41% to 211%, and the model with the narrowest CI that still
included the true population size was TIRM with 55.2%
relative width.
Model SE5, which assumes that the sexes differ in density

and in detection probabilities, had the highest AICc relative
weight (67%, >3.5 times higher than the second supported
model, SE1; Table 2; Table S4, available online in
Supporting Information). However, our GLM suggested
no difference in detection probability by sex in our data,
which is more compatible with the assumptions of SE2 and
SE4 (i.e., detection heterogeneity independent of sex), both
of which were more accurate than SE5 (Table 2).

Population Size Estimation: 3-Year Sampling Period
Compared to the 3-month period, data from the 3-year
period produced more accurate estimates for all non-spatial
models, and for 2 of the 5 spatially explicit models (Fig. 3 and
Table 2). Underestimates of the true population size (8 of 9
models) were again more frequent than overestimates. All 9
models had narrower CIs in the 3-year than in the 3-month
period and the model with the narrowest CIs that still
included the true population size was again the TIRM
(35.9% relative CI width). However, more than half of the
models excluded the true population size in the 3-year
sampling period (5 of 9; Table 2 and Fig. 3).
As in the 3-month sampling period, TIRM was supported

over ECM (LR¼ 46.38, P< 0.001), TIRMpart over TIRM
(P< 0.01), and SE5 had the highest AICc support (95%
weight), although TIRM and SE4 (not TIRMpart and SE5)
were the most accurate non-spatial and spatial models,
respectively.

DISCUSSION

In this study, we examined the performance of several
commonly used genetic CRmodels for estimating population
size using a population of chimpanzees whose size (N¼ 186–
189) and age and sex composition was precisely known
(Langergraber et al. 2007, 2009, 2011, 2013;Watts 2012).We
evaluated 9 different models employing different assumptions
regarding detection probabilities (Table 1), home range
locations, and sex-dependent densities. Genetic CR estimates
were generally lower than the true population size, which was
often not even included within the CI (Table 2 and Fig. 3).
These underestimates were not surprising in the cases of the
Bayesian, ECM, SE1, and SE3 models because these models
assume equal detection probabilities (Table 1). Equal capture
models typically underestimate population size when hetero-
geneity is present (Miller et al. 2005, Caniglia et al. 2011).
However, even models that accounted for the detection
heterogeneity present in our data tended to underestimate
population size (i.e.,TIRM,TIRMpart, SE2,SE4).Although
our true population size was itself slightly lower than the
number of individuals using the area, the sampling and
inclusion of genotypes from 3 individuals from neighboring
communities using the periphery of the Ngogo territory were
too few to inflate the estimates.

Figure 2. Detectionof chimpanzees as a functionof their ageandsex inKibale
National Park, Uganda, 2011–2013. Circles indicate individuals either
detected (detection¼ 1) or not detected (detection¼ 0). Darker circles
indicate more individuals of that age. Curved lines represent the detection
probability functions for males (solid line) and females (dotted line).
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Despite the overall tendency of the models to underesti-
mate population size, some models performed reasonably
well with regard to accuracy, relative CI width, and inclusion
of the true population size within the CIs. Importantly,
TIRM and TIRMpart performed well according to these 3
criteria in both the 3-month and 3-year sampling periods.
This is encouraging considering that previous research has
emphasized TIRM when using multiple genetic CR
approaches to estimate population size (Puechmaille and
Petit 2007; Arandjelovic et al. 2011, 2015; McCarthy et al.
2015). Also encouraging was the result that, in contrast to
the general pattern for the models overall, TIRM and
TIRMpart had higher overall performance in the 3-year
versus the 3-month sampling period, with notably narrower
confidence intervals in the former. The superior performance
of these 2 models was also correctly detected by the LRT
associated with the capwire package (Pennell et al. 2013).
Although in our study TIRMpart produced an accurate
population size estimate, reports of inconsistent results using
TIRMpart in simulations suggest that use of this approach
should be carefully evaluated (Stansbury et al. 2014).
We expected that SECR models would not provide

accurate estimates of population size because we sampled
only within the home range of the Ngogo group, which
violates one of the main assumptions of the SECR models
(Efford 2011). Nevertheless, SE2 and SE4, which assumed
heterogeneous detection probability and equal or sex-biased
density, respectively, had an accuracy in the 3-year sampling

period comparable to the non-spatial models TIRM and
TIRMpart (Table 2). Their relative CI width also decreased
from the 3-month to the 3-year sampling period, although
the CIs remained very large (>50% of the estimate; Table 2).
The SECR estimates of population size should incorporate
prior information on species-typical home range sizes and
sample broadly enough such that several are likely to be
included in the sampling area, a strategy implemented by
Moore and Vigilant (2014) and McCarthy et al. (2015) for
chimpanzees. A recent CR study with live traps covering
several home ranges reported that SECR models gave
accurate and precise estimates of a squirrel (Tamiasciurus
hudsonicus) population of known size (Van Katwyk 2014).
A concern in planning a long-term genetic census is that

longer study periods may increase the chance that individuals
enter or leave the population via births, deaths, or migration.
Indeed, with a few individuals leaving and 30 individuals
joining the population during the sampling period, theNgogo
population was not demographically closed. However, the
majority of changes in population membership during this
timewere due to the birth of infants, which are very unlikely to
be detected. Of the individuals who were detected during the
3-year sampling period, 98% (n¼ 101) were present for its
entire duration. Thus, with regard to individuals belonging to
age classes that were likely to be detected, the population was
effectively closed. This explains why the 4 models accounting
for detection heterogeneity (i.e., TIRM, TIRMpart, SE2,
SE4) gave an accurate estimation of population size.

Figure 3. Chimpanzee population size estimates in Kibale National Park, Uganda, with the 3-month dataset (gray circles; 2012) and the 3-year dataset (black
crosses; 2011–2013). The symbol (circle or cross) and the vertical lines indicate the point estimates and confidence intervals or credible intervals of each model.
The dashed gray horizontal line indicates the true number of individuals in the population in the 3-month period (N¼ 189). The dotted black horizontal line
indicates the true number of individuals in the population in the 3-year period (N¼ 186). BS¼Bayesian model assuming equal detection probability.
ECM¼ non-spatial maximum likelihood (ML) model assuming equal detection probability. TIRM¼ non-spatial ML model assuming 2 detection
probabilities. TIRMpart¼TIRMwith high detection probability individuals excluded (partitioned dataset).Maximum likelihood spatially explicit models have
the following assumptions: SE1¼ constant density and equal detection probability; SE2¼ constant density and 2 detection probabilities; SE3¼ sex-dependent
density and equal detection probability; SE4¼ sex-dependent density and 2 detection probabilities for each sex; SE5¼ sex-dependent density and detection
probability.
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Other census research on great apes assumed that infants
do not really belong to the detectable population, and
estimated the number of undetected infants based on the
average ratio of infants/adult females in other habituated and
demographically monitored populations (Roy et al. 2014).
However, this appears inadvisable for several reasons. First,
adjusting the population point estimates with an estimated
number of undetected individuals prohibits the continued
use of the CIs, which provide essential information about the
precision of the estimate. Second, demographic research on
habituated chimpanzee populations shows that the propor-
tion of the population that is composed of infants can
substantially vary between groups (e.g., 0.12–0.33, R. M.
Wittig, Max Planck Institute for Evolutionary Anthropol-
ogy, personal communication), making it problematic to find
a universally applicable adjustment factor. Third, infant
detection probability is low but not null (Fig. 2), and they are
included in the category of low detection probability as
shown by the high accuracy of population size estimates of
TIRM and TIRMpart (Table 2).

Our results provide provisional support for the International
Union forConservation ofNature’s (IUCN) recommendation
that genetic CR be used alongside or instead of traditional
census methods to estimate chimpanzee population size
(K€uhl et al. 2008). For example, in a census of large mammal
species throughout Kibale National Park, Wanyama et al.
(2010) used sightings of chimpanzee nests and feces along a
4-km transect (repeated 3 times) to estimate a density of
2.7–3.6 chimpanzees/km2 atNgogo.Their confidence interval
excluded the true population density at this time (4.9, long-
term records; K. E. Langergraber, Arizona State University,
unpublished data), and the closest confidence limit under-
estimated the true population density by 36%. Although the
genetic CR estimates in the current study also tended to
underestimate population size, even the worst performing
genetic CR estimators did not perform this poorly in regard to
relative CI width. However, with the sampling intensity
obtained in the current study, even our best performinggenetic
CR estimates (i.e., TIRM, TIRMpart) would detect a
population decrease of only 21–47%—although this is
somewhat more sensitive than the transect method of
Wanyama et al. (2010), which requires 49–60% change for
detection at the same confidence level.
The accuracy of our best performing population size point

estimators, most notably TIRM and TIRMpart, coupled
with the large confidence interval associated with all
estimates lead us to conclude, in common with previous
authors (Roy et al. 2014), that high sampling intensity is the
key element to consider in designing great ape census studies
capable of detecting small (5–10%) changes in population
size. Our sampling intensity of 2.0 genotyped samples/
individual for samples collected over the 3-year period is at
the low end of the suggested value of 2–2.5 (Miller et al.
2005, Arandjelovic et al. 2010). Also, only about 40% of our
collected samples produced usable genotypes, and such low
success rates may be typical of samples collected from
unhabituated animals and must be taken into account.

MANAGEMENT IMPLICATIONS

Our study illuminates the efficacy of sample collection as a
primary focus, contrasting to sample collection as an ancillary
goal of other tasks, such as patrolling for snares and other
illegal hunting activities. Not surprisingly, the majority
of our successfully genotyped samples were collected in a
3-month period dedicated to systematic surveying for fecal
samples, but the additional samples collected over the longer
term also proved valuable. This suggests that a combined
strategy is viable but may be more effective when including
repeated short-term sessions of intense sampling. All species
of great apes are listed on the IUCN Red list of endangered
species and necessitate intensive conservation and monitor-
ing efforts. Although large-scale population estimates with
non-genetic methods may ring the alarm of dramatic
population decline (Plumptre et al. 2015), they remain
extremely imprecise and genetic CR can help provide more
accurate, precise, and fine-scale population trends, even over
a longer period of time. In our study, the TIRM provided the

Table 2. Results of all chimpanzee population size estimates in Kibale
National Park, Uganda, for the 3-month (2012) and the 3-year (2011–2013)
sampling sessions.

Modela N̂
Relative bias

(%) CIb
CI width (% of

estimate)

3 months (true population size¼ 189)
BS 127 �32.8 110–167 44.9
ECM 127 �32.8 104–156 40.9
TIRM 172 �9.0 156–251† 55.2
TIRMpartc 180 �4.8 161–269† 60.1
SE1 97 �48.93 71–131 62.3
SE2 220 16.59 155–314† 72.1
SE3 97 �48.80 67–141 76.6
SE4 220 16.62 145–334† 85.6
SE5d 125 �34.11 74–211† 110.2

3 years (true population size¼ 186)
BS 131 �29.6 120–151 23.7
ECM 131 �29.6 117–145 21.4
TIRM 184 �1.1 172–238† 35.9
TIRMpartc 195 4.8 177–267† 46.2
SE1 78 �58.11 61–100 50.7
SE2 171 �7.89 127–230† 60.1
SE3 78 �58.12 57–107 64.4
SE4 172 �7.66 120–245† 72.8
SE5d 92 �50.56 62–136 80.0

a BS¼Bayesian model assuming equal detection probability. ECM¼
non-spatial maximum likelihood (ML) model assuming equal detection
probability. TIRM¼ non-spatial ML model assuming 2 detection
probabilities. TIRMpart¼TIRM with high detection probability
individuals excluded (partitioned dataset).Maximum likelihood spatially
explicit models have the following assumptions: SE1¼ constant density
and equal detection probability; SE2¼ constant density and 2 detection
probabilities; SE3¼ sex-dependent density and equal detection proba-
bility; SE4¼ sex-dependent density and 2 detection probabilities for
each sex; SE5¼ sex-dependent density and detection probability.

b CI¼ confidence or credible interval; CIs that contain the true number of
individuals are indicated by †.

c Indicates the non-spatial model with strongest statistical support with a
likelihood ratio test.

d Indicates the spatially explicit capture-recapture model with strongest
statistical support based on Akaike’s Information Criterion corrected for
small sample size (AICc).
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best model when both accuracy and precision of the estimate
were considered.
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