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Summary

1. Reliable estimates of animal density and abundance are essential for effective wildlife conservation and

management. Camera trapping has proven efficient for sampling multiple species, but statistical estimators

of density from camera trapping data for species that cannot be individually identified are still in develop-

ment.

2. We extend point-transect methods for estimating animal density to accommodate data from camera traps,

allowing researchers to exploit existing distance sampling theory and software for designing studies and ana-

lysing data. We tested it by simulation, and used it to estimate densities of Maxwell’s duikers (Philantomba

maxwellii) in Ta€ı National Park, Côte d’Ivoire.

3. Densities estimated from simulated data were unbiased when we assumed animals were not available for

detection during long periods of rest. Estimated duiker densities were higher than recent estimates from line tran-

sect surveys, which are believed to underestimate densities of forest ungulates.

4. We expect these methods to provide an effective means to estimate animal density from camera trapping data

and to be applicable in a variety of settings.
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Introduction

Remote motion-sensitive photography, or camera trapping,

is increasingly used in wildlife research, and allows multiple

research objectives to be addressed (Sollmann, Mohamed &

Kelly 2013a; Burton et al. 2015; Rovero & Zimmermann

2016). Estimation of population density (D) is a key objec-

tive of many ecological studies and assessments of conser-

vation status employing camera traps (Burton et al. 2015;

Rovero & Zimmermann 2016). If individuals are recognis-

able, density can be estimated using spatially explicit cap-

ture–recapture (SECR) models (Efford, Borchers & Byrom

2009), but methods for estimating D from camera trapping

data in the absence of individual identification are still in

development (Sollmann, Mohamed & Kelly 2013a; Burton

et al. 2015; D�enes, Silveira & Beissinger 2015; Rovero &

Zimmermann 2016). Detection rates at camera traps have

been used to index abundance, however, due to spatiotem-

poral variation in detection rates indices can rarely be con-

verted to estimates of absolute density, nor do they provide

reliable evidence of differences or trends in abundance

(Sollmann et al. 2013b; Burton et al. 2015). The random

encounter model (REM) estimates absolute density as a

function of the detection rate, the dimensions of a sector

within which detection is certain, and the speed of animal

movement; methods for quantifying the latter two parame-

ters from camera trapping data have been described (Row-

cliffe et al. 2008, 2011, 2016). The REM has been

recognised as a potentially useful model, but its accuracy

and reliability remains to be demonstrated (Rovero & Mar-

shall 2009; Sollmann, Mohamed & Kelly 2013a; Zero et al.

2013; Cusack et al. 2015a; Balestrieri et al. 2016; Caravaggi

et al. 2016). SECR estimators for unmarked populations

estimate the number and location of animals’ activity cen-

tres from the spatial correlation of counts at different sam-

pling locations; sampling must be sufficiently intensive to

detect the same animals at multiple locations, and estimates

lack precision (Chandler & Royle 2013).

Here, we describe how densities of unmarked animal popu-

lations can be estimated by distance sampling (DS) with cam-

era traps, allowing researchers to take advantage of a well-

described theoretical framework complete with software and

advice for designing studies and analysing data (Buckland

et al. 2001, 2004, 2015; Thomas et al. 2010; Miller 2015; dis-

tancesampling.org). Below, we formulate a point transect dis-

tance sampling model specific to camera traps and describe its

assumptions and the estimation of variances. We test for bias

in estimated density ( bD) and its variance by simulation, and

apply the method to estimate the density of Maxwell’s duikers

(Philantomba maxwellii) in Ta€ı National Park, Côte d’Ivoire.*Correspondence author. E-mail: ejh20@st-andrews.ac.uk
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Materials andmethods

FORMULATION OF THE MODEL

A camera trap (CT) is deployed at a point k that is independent of ani-

mal density for a period of time Tk and set to record images for as long

as an animal is present to trigger it. We predetermine a finite set of

snapshot moments within Tk, t units of time apart, at which an image

of an animal could be obtained. Temporal effort at the point is then

Tk/t. When images of animals are obtained, we estimate the horizontal

radial distance ri between the midpoint of each animal and the camera,

at each snapshot moment, for as long as it remains in view. If the cam-

era covers an angle h radians, then h
2p describes the fraction of a circle

covered by the camera, so we define overall sampling effort at point k

as hTk

2pt . We regard the data as a series of snapshots, and density estima-

tion follows by standard point transect methods (Buckland et al.

2001).We estimateD as

bD ¼
PK

k¼1 nk

pw2
PK

k¼1ek
bPk

; eqn 1

where ek ¼ hTk

2pt is the effort expended at point k,K is the set of points, h
is the horizontal angle of view (AOV) of the camera,w is the truncation

distance beyond which any recorded distances are discarded, nk is the

number of observations of animals in the population of interest at point

k, and bPk is the estimated probability of obtaining an image of an ani-

mal that is within h andw in front of the camera at a snapshotmoment.

Substituting ek in eqn 1, we have

bD ¼ 2t
PK

k¼1nk

hw2
PK

k¼1Tk
bPk

: eqn 2

We use the distances ri to model the detection function and hence to

estimatePk.

ASSUMPTIONS AND PRACTICAL CONSIDERATIONS

The usual DS assumptions apply (see chapter 2 of Buckland et al.

2001). We record distances at instantaneous snapshot moments to

ensure that animal movement does not bias the distribution of detec-

tion distances. Below, we describe an approach for accurately assigning

animals to distance intervals; Rowcliffe et al. (2011) and Caravaggi

et al. (2016) describe methods for measuring continuous distances

betweenCTs and detected animals.

Random designs or systematic designs with random origin are con-

sistent with the assumption that points are placed independently of ani-

mal locations. Selecting camera orientations as part of the design is also

advisable. Orientations could be selected randomly, or the same orien-

tation could be used for all cameras. Deviating slightly from the loca-

tion and orientation selected by design (e.g. to attach the camera to a

nearby tree or to avoid an obscured field of view) would not bias esti-

mates provided field staff do not intentionally target habitat features

known to be either preferred or avoided by the animals.

Empirical, design-based estimators of the encounter rate variance

are robust to violation of the assumption that detections are indepen-

dent events (Fewster et al. 2009; Buckland et al. 2015). However, in

CT surveys we expect violations to be severe because we include multi-

ple detections of the same animal during a single pass through the

detection zone. We can avoid this assumption by estimating variances

using a nonparametric bootstrap, resampling points with replacement

(Buckland 1984; Buckland et al. 2001). Another consequence of lack

of independence is that the usual goodness-of-fit tests and model

selection criteria are invalid (Buckland et al. 2001). Methods for select-

ing among DS models when observations are not independent are in

development.

The assumption that detection is certain at zero distance could be

violated by (i) animals passing beneath the field of view (FOV) of the

camera, (ii) failure to identify the species because only part of the ani-

mal is visible, and possibly (iii) the delay between the time the sensor is

activated and the time the first image is recorded (the ‘trigger speed’), if

animals directly in front of the camera at a snapshot moment do not

yield images. Such violations may be detectable during exploratory

analysis in the form of fewer than expected detections near the point,

and bias can be avoided via left-truncation (Buckland et al. 2001;Mar-

ques et al. 2007). To minimise violations and ensure that detection

probability is certain or high at some distance near the point, cameras

should be set at a height appropriate to the species of main interest

(Rovero & Zimmermann 2016). Lower heights would reduce the

chance of small animals passing beneath the camera at short distances,

but would also reduce the range of distances over which animals could

be detected and therefore sample size and flexibility when modelling

the detection function. Pairs of cameras mounted facing each other

could reveal violations caused by any of the three sources mentioned

above. Paired camerasmounted some distance apart targeting the same

location (but not necessarily facing each other) would also provide the

data needed to apply mark–recapture distance sampling methods,

which avoid this assumption (Buckland et al. 2004; Laake et al. 2011).

In traditional point transect surveys, human observers measure dis-

tances to each detected animal only once during each visit to a point,

and effort at each point is the number of times it was visited. CTs

remain at the point, but the snapshot approach discretises the number

of times we could potentially detect each animal (as Tk/t as described

above). However, CTs detect only moving animals within the range of

the sensor and the FOV of the camera, and can be programmed to

record multiple still images, or video footage, each time the sensor is

triggered (Rovero & Zimmermann 2016). These characteristics of CTs

as observers must be taken into consideration. Observed distances

upon first detection are expected to be positively biased because ani-

mals entering the detection zone through the arc of the sector would

contribute a disproportionate number of observations at far distances.

Bias would be slight if the time between snapshot moments (t) was

small enough to ensure that the animals did not move far relative to the

range of the sensor between snapshots, as then the observations would

be representative of animals’ continuous paths past the CTs. However,

we prefer to avoid the potential for bias by assuming that the snapshot

moments are selected independently of animal locations, and predeter-

mining them as specific times of day to ensure that the assumption is

met. Practical considerations constrain t. If t is large, animals that trig-

ger the sensormight leave the detection zone before a snapshotmoment

arises, which would not cause bias but wastes data. As t is reduced,

there would be fewer missed detections and larger samples as we record

distance to each animal multiple times during a single pass in front of

the CT. Eventually, improvements in the precision of bD with larger

samples would become negligible because variation in the encounter

rate among points would contribute most of the variation in estimated

density. Reducing t further would then needlessly increase the time

required to process and analyse the data. We suggest that values from

0�25 to 3 s are likely to be useful, with values at the lower end of the

range being more appropriate for faster-moving or rarer animals, and

CTswith faster trigger speeds.

Programming cameras to record time-stamped video would make it

straightforward to record distances at the predetermined snapshot

moments. If still images are preferred, cameras should be programmed
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to record an image at the next several snapshot moments when trig-

gered, or, if this is not feasible, to record a rapid series or ‘burst’ of still

images to ensure that images are recorded at times that align with snap-

shot moments. There should always be the potential for the camera to

be triggered again immediately or after a minimal delay. Note that

depending how cameras are programmed, the sample of distances

observed in CT data may or may not comprise a realisation from the

detection function described by the probability that an animal at dis-

tance r triggers the sensor. If cameras record a single image at the subse-

quent snapshot moment, or a rapid series of images for <t seconds,

when the sensor is triggered, then each detection of an animal that trig-

gers the sensor several times during a pass in front of a CT is a function

of the sensitivity of the sensor. If cameras are set to record video, or a

series of still images for >2t seconds, then all but the first detection is

certain for as long as the animal remains in the FOV and the camera

continues to record images. Furthermore, regardless of how the camera

is programmed, any other animals in the FOV while the camera is

recording images would contribute observations that do not depend on

the sensitivity of the sensor. These differences do not invalidate the

method provided we define the detection function as representing the

proportion of locations at different distances which are recorded,

regardless of whether an animal triggered the sensor at that distance.

Obviously, we can only estimate the density of populations that are

available for detection by CTs. Similarly, because the sampling dura-

tion at each location (Tk) is part of the model definition, we expect den-

sities of animals that spend part of their time outside the vertical range

of camera traps to be underestimated, and for the bias to be propor-

tional to time animals are not available for detection. For example,

with Tk set to the study duration, we expect bD of a species that spends

all its time in the canopy to be zero, and of a species that spends half its

time underground and the rest at ground level to be half of the true den-

sity. Negative bias would also result if animals went undetected only

because movement was insufficient to trigger the sensor. To avoid this

bias, either Tk should be defined as the amount of time that the entire

population was available for detection while cameras were operating,

or, equivalently, the proportion of time when animals were available

for detection should be included as a parameter in the model. Animals

are unavailable for detection when outside the vertical range of CTs,

and may not be available when within this range depending on their

level of activity.We explore this issue further in subsequent sections.

SIMULATIONS

We tested themethod using simulations employing simple and complex

models of animal movement and different sampling scenarios (see

Appendix S1, Supporting Information). With the simple model, ani-

mals moved continuously at a constant speed and tended to maintain

their heading. The complex model included variable speeds and tortu-

osities, and all animals rested for the same 12 h of each day. We

recorded the distance between cameras and animals within detection

zones every 2-s, 24 h per day. Where the complex model was used, we

also collected data only when animals were moving, and reduced Tk by

half accordingly when estimating density.

EXAMPLE: MAXWELL ’S DUIKERS IN TA€I NATIONAL PARK

We used point transect DS methods to estimate the density of

Maxwell’s duikers within the territory of the ‘east group’ habituated

chimpanzee community in Ta€ı National Park, Côte d’Ivoire

(Despr�es-Einspenner et al. 2017; Fig. 1a). Maxwell’s duikers were

sampled from 28 June through 21 September 2014 at 23 camera traps

(Bushnell Trophy CamTM; Bushnell, Overland Park, MO, USA,

Model 119576C) mounted at a height of 0�7–1�0 m and set to high

sensitivity. Cameras were deployed with a fixed orientation of 0˚ at

the intersections of a grid with 1 km spacing and a random origin

superimposed over the study area (Fig. 1b). Realised sampling loca-

tions and orientations deviated from the design by as much as 30 m,

and 40°, respectively, in order to mount cameras on trees and to

ensure there was some chance of detecting animals. During installa-

tion of each camera, we measured horizontal radial distances from

the camera, and recorded videos of researchers holding distance

markers, at 1 m intervals out to 15 m, in the centre and along both

sides of the FOV. We estimated distances to filmed duikers by com-

paring their locations to those of researchers in the reference videos.

We set t = 2 s, and recorded the distance interval within which the

midpoint of each animal fell at 0, 2, 4, . . ., 58 s after the minute. Lar-

ger distances were more difficult to measure precisely, so we assigned

animals to 1-m intervals out to 8 m, but binned observations between

8 and 10 m, 10 and 12 m, 12 and 15 m, and beyond 15 m.

We excluded data from one camera because the FOV was lar-

gely obscured by vegetation, and another which was placed on a

slope and failed to detect any animals, but we included data from

a third camera that functioned normally but did not detect any

duikers. Maxwell’s duikers sleep or rest for most of each night and

for shorter periods during the day (Newing 1994, 2001). We

assumed they would not be available for detection overnight and

excluded the hours of darkness (19.00–6.00 h) from Tk a priori.

We accounted for limited availability during the daytime three dif-

ferent ways. First we naively assumed that all duikers were active

by 6.30.00 h and remained so through 17.59.59 h, included dis-

tances observed during this interval in a ‘daytime’ dataset, and

defined temporal effort at each location (Tk/t) as the number of 2-s

time steps during that time interval (20 699), multiplied by the num-

ber of sampling days. Second, we assumed that all animals were

available only during apparent times of peak activity (6.30.00–

8.59.59 h and 16.00.00–17.59.59 h) and recalculated temporal effort

and censored distance observations accordingly (Tk/t per

day = 8098). Third, we defined Tk and included observations as
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Fig. 1. Location of the study area (grey polygon) in Ta€ı National Park

(TNP), Côte d’Ivoire, 2014 (a), and (b) locations of 23 camera traps

deployed in a grid with 1 km spacingwithin the study area.
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above for the daytime dataset, and included an independent esti-

mate of the proportion of time captive Maxwell’s duikers were

active during the same time interval (0�64; Newing 2001) in the

denominator of eqn 2. We included only data from complete days

when cameras were operating and not visited by researchers.

We fit point transect models in program Distance (version 7.0;

Thomas et al. 2010), defining survey effort at each location as hTk

2pt .

The cameras had an AOV of 42°, and a wider effective angle of

the sensor (Trailcampro.com 2015), so we set h = 42° or 0�733
radians. We considered models of the detection function with the

half-normal key function with 0, 1 or 2 Hermite polynomial

adjustment terms, the hazard rate key function with 0, 1, or 2

cosine adjustments, and the uniform key function with 1 or 2

cosine adjustments. Adjustment terms were constrained, where nec-

essary, to ensure the detection function was monotonically decreas-

ing. We selected among candidate models of the detection function

by comparing AIC values, acknowledging the potential for overfit-

ting because many observations were not independent. We present

measures of uncertainty derived from design-based variances (‘P2’

of Fewster et al. 2009, Web Appendix B), and from 999 bootstrap

resamples, with replacement, across camera locations.

Results

SIMULATIONS

Where we used the simple model of animal movement, and

where we used the complex model of animal movement and

collected data only when animals were active, bD was unbi-

ased (Table S1). Results were biased and erratic when we

recorded distances to resting animals (see Appendix S1 for

details). Design-based variances were smaller than the sam-

pling variance of bD across iterations, and associated confi-

dence interval coverage was <90% (Table S1). Where we

estimated variance by bootstrapping, the coefficient of vari-

ation was 0�119, similar to the sampling variance of bD, and

CI coverage was 93�6% across 1000 iterations. Doubling

spatial sampling effort improved precision, slightly more so

where we doubled the number of locations as opposed to h
(Table S1).

EXAMPLE: MAXWELL ’S DUIKERS IN TA€I NATIONAL PARK

We obtained 11 324 observations of the distance between

Maxwell’s duikers and cameras in 806 different videos. Duik-

ers were rarely filmed during hours of darkness, and none were

filmed between midnight and 6.00 h. The frequency of detec-

tion increased steadily after 6.00 h to a maximum between

6.30 h and 7.00 h and remained relatively high until 9.30 h,

after which it decreased slightly and remained relatively low

until 16.30 h, then increased again and remained high until

18.00 h, then declined gradually until 19.00 h (Fig. 2). Duikers

were always active when detected; CTs did not record any

duikers that were asleep or stationary for an entire minute. We

recorded 11 180 distances from 6:30:00 h through 17:59:59 h,

and 6274 during times of peak activity.

Exploratory analyses revealed no evidence of data collection

errors, and a paucity of observations between 1 and 2 m but

not between 2 and 3 m, so we left-truncated at 2 m. Fitted

detection functions and probability density functions were

heavy-tailed when distances >15 m were included, so we right-

truncated at 15 m. Truncating removed 8% of observations

from the daytime dataset, leaving n = 10 284, and 6�5% of

observations from the peak activity dataset, leaving n = 5865.

Mean encounter rates (mean numbers of duikers observed per

2-s time interval) across all points were 3�27 9 10�4 during the

daytime and 4�76 9 10�4 during times of peak activity.

Encounter rates were highly variable among locations but did

not exhibit an obvious spatial pattern across the study area,

and there was no evidence of spatial autocorrelation

(Moran’s IP = 0�47; Fig. 3).
When we fit the hazard rate model with two adjustment

terms to the daytime dataset, the detection function was not

monotonically decreasing, so this model was not considered

for estimation. All models were fitted successfully to the peak

activity dataset. The hazard rate model with no adjustments

minimised AIC and was used to estimate density in both cases.

Probability density functions of observed distances and rela-

tionships between detection probability and distance were sim-

ilar (Fig. 4). Detection probability was ~1�0 within 5 m and
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Maxwell’s duikers in Ta€ı National Park, Côte

d’Ivoire, 2014.
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0�05 at 15 m; effective detection radii were 9�1 and 9�4 m from

the daytime and peak activity datasets, respectively.

We expected to underestimate density where we assumed

duikers were active all day; bD was 37% higher when we

included only data from times of peak activity (Table 1).

Including an independent estimate of the proportion of time

active during the daytime as a parameter in the model fit to the

daytime dataset yielded a still higher estimate (‘Active daytime’

in Table 1). Measures of uncertainty in the proportion of time

active were not available (Newing 2001) so did not contribute

to the variance of bD. Bootstrap variances were larger than

design-based analytic variances (Table 1). The vast majority

(99�8%) of the design-based variance of bD was attributable to

the variation in encounter rate between locations, and only

0�2% to detection probability.

Discussion

Simulations demonstrated the potential for themethod to yield

unbiased density estimates, but also that animals’ activity pat-

terns must be accounted for. Where simulated animals rested

for half of each day and we setTk equal to the survey duration,

the most common scenario was that animals did not rest in

front of CTs and negative bias in bD was proportional to the

time spent resting. When we recorded distance at each snap-

shot moment while animals rested in front of CTs, the encoun-

ter rate and therefore bD was higher on average, but the shape

of the detection function was strongly affected, leading to erra-

tic estimates and cases where models could not be fitted to the

data. In practice, it is unlikely that we would detect animals

while they sleep or rest because movement will be insufficient

to trigger the sensor. Therefore, estimates of the proportion of

time animals are active within the vertical range of CTs will be

required to avoid negatively biased bD. Ideally, this proportion

would be estimated from data collected concurrently with the

distance data to ensure it is representative. Fortunately, the

temporal distribution of camera trap detections is informative

Fig. 3. Variation in encounter rates of Maxwell’s duikers among 21

camera trap locations in Ta€ı National Park, Côte d’Ivoire, 2014 (range

0�00–1�45 9 10�3). The areas of the grey circles are proportional to the

encounter rates.
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regarding animal activity patterns (Lynam et al. 2013; Cruz

et al. 2014; Rowcliffe et al. 2014). If it is reasonable to assume

that the entire population is available for detection for any part

of each day, additional data would not be required to estimate
bD accurately, because we could either (i) analyse only the data

collected at that time, censoring effort and distance data from

other times, or (ii) estimate the overall proportion of time

active directly from the CT data (e.g. Rowcliffe et al. 2014).

Newing’s (1994) data fromTa€ı indicated that therewas no time

at which all wild duikers could be assumed to be active. If this

was true during our survey, we may have underestimated den-

sity where we did not correct for limited availability within the

time included inTk, because even at times of peak activity some

animals may have been resting and unavailable for detection.

Activity data from wild duikers were presented only as figures

and could not be converted into estimates of the overall pro-

portion of time active (Newing 1994). We therefore relied on

the assumption that activity data from captive duikers (New-

ing 1994, 2001) were representative of activity patterns during

our survey. If this assumption held, then the density estimate

calculated using their estimate of the proportion of time active

during the day should not be biased as a result of limited avail-

ability. We suggest that the need to account for availability

should not pose a serious obstacle to reliable estimation of the

density of many species, but for others, notably ectotherms,

and semi-arboreal and fossorial species, it will require careful

consideration, and possibly additional data. We further sug-

gest that combining Rowcliffe et al.’s (2014) or similar meth-

ods for estimating the proportion of time active from detection

times at CTs with the point transect method described here

could yield accurate density estimates for many species from

CTdata alone.

Avoidance of, or attraction to, CTs would bias encounter

rates and therefore density estimates. Some species exhibit

complex responses to CTs or are particularly wary of humans

(S�equin et al. 2003). If behavioural responses are expected or

apparent in images of detected animals, CTs could be deployed

prior to the start of the actual survey to allow animals to

become accustomed to them and for signs of human presence

to dissipate. Similarly, effort and distance data from times

when animals may have been displaced from the trap sites by

humans visiting them to download data, replace batteries, etc.,

should be censored.

The probability of detection at PIR CTs is lower at greater

angles from the centre of the FOV, due to a combination of the

trigger speed, the effective horizontal angle of the sensor rela-

tive to the AOV of the camera (which varies among CT mod-

els) and possibly reduced sensitivity of the sensor at the

periphery of its horizontal range (Rowcliffe et al. 2011; Rovero

et al. 2013; Rovero & Zimmermann 2016). This introduces

heterogeneity in the detection function. Fortunately, provided

that detection is certain at the zerodistance, the pooling robust-

ness property ensures that estimation is unbiased in the pres-

ence of heterogeneity in detectability among individuals

(Buckland et al. 2004), and this also applies to heterogeneity

caused by differences in angle at different snapshot moments.

However, if detection probability at high h is much lower than

in the centre, fitted models of the detection function might

show a rapid drop in detection probability near the point,

whereas detection functions with a gradual decrease near the

point are preferred for stable density estimation (Buckland

et al. 2001). The expected distribution of angles within a sector

within which the sensor is fully effective is uniform.We recom-

mend that researchers measure angles as well as distances to

detected animals (e.g. Caravaggi et al. 2016), and test for

departures from the uniformity assumption at increasing

angles as part of their exploratory analysis. If departures are

apparent, the data could be truncated to exclude observations

beyond an anglewithinwhich the distribution is approximately

uniform, in which case h should be set to two times the trunca-

tion angle rather than the AOV of the camera in the definition

of effort. An alternative approach that would allow us to retain

all of the data would be to develop a two dimensional detection

function where detection probability depends on both radial

distance and angle from centre, using methods similar to those

developed by Marques et al. (2010). We expect heterogeneity

with angle to bemore severe withCTmodels with narrow hori-

zontal ranges of the sensor relative to the AOV of the camera,

or slow trigger speeds, and where faster-moving animals are

sampled. CTs with fast trigger speeds, short recovery times,

and curved array Fresnel lenses (which provide a wide effective

angle of detection such that the camera begins recording

images as or even before the animal enters the FOV; Rovero &

Zimmermann 2016) could reduce or eliminate differences in

detection probability at different angles in future studies.

The encounter rate variance accounted for the vast majority

of the design-based variance in duiker density, and variances

around bD were larger than for simulated data despite similar

sample sizes. Real populations exhibit clumped or patchy dis-

tributions and non-random movement, leading to variable

encounter rates among sampling locations and hence greater

uncertainty in bD (Buckland et al. 2001; Fewster et al. 2009);

the small area sampled at each location exacerbates this prob-

lem. Increasing the area sampled will therefore enhance preci-

sion, more so than would increasing temporal effort at a point.

Theory predicts that increasing the number of points will yield

the largest improvements to precision (Buckland 1984; Fewster

et al. 2009). That the improvement in precision in simulations

was only slightly greater where we doubled the number of sam-

pling locations than where we doubled h is not representative

Table 1. Densities of Maxwell’s duikers in Ta€ı National Park, 2014,

estimated using differentmethods to account for limited availability for

detection

Design-based Bootstrap

Availability D̂ CV 95%CI CV 95%CI

Daytime 10�6 0�27 6�1–18�3 0�40 5�0–21�8
Peak activity 14�5 0�30 7�8–26�9 0�36 6�1–26�9
Active daytime 16�5 0�27 9�5–28�6 0�40 7�7–34�1

Bootstrap confidence intervals were calculated using the percentile

method.
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of real studies because the expected spatial distribution of ani-

mal locations was uniform, andmovement was random. Coef-

ficients of variation around bD for duikers were >35% despite

large samples of distance observations, so we recommend that

future studies employmore points to improve precision.

The average density of Maxwell’s duikers throughout Ta€ı

National Park was recently estimated as 1�6 per km2 from line

transect DS surveys (N’Goran 2006). However, line transect

sampling by human observers is believed to severely underesti-

mate densities of forest-dwelling animals in general, and forest

antelopes in particular, due to effects of evasive movement and

behaviour in response to observers on both the encounter rate

and thedistributionof observeddistances (Koster&Hart 1988;

Jathanna, Karanth & Johnsingh 2003; Rovero & Marshall

2004, 2009; N’Goran 2006; Marshall, Lovett & White 2008;

Marini et al. 2009). For this reason, line transect surveys of sign

are frequently performed, and sign densities converted to ani-

mal densities. This approach is expected to yield biased esti-

mates in the absence of local and concurrent estimates of sign

production and decay rates, which are time-consuming to esti-

mate (Plumptre 2000; Kuehl et al. 2007; Todd et al. 2008).

Dung surveys may further require genetic analysis to identify

the species (Bowkett et al. 2009). Distance sampling with CTs

apparently avoided the underestimation characteristic of line

transect surveys of live animals, in less time than would be

required toobtain reliable estimates fromsignsurveys.

The recent proliferation of CT studies is providing new

information about wildlife in diverse habitats (Burton et al.

2015; Rovero & Zimmermann 2016). Where estimating the

density of a rare but individually identifiable species is the pri-

mary research objective, it may be preferable to deploy CTs

non-randomly in order to obtain sufficient detections of indi-

viduals to estimate density by SECR (Wearn et al. 2013;

Cusack et al. 2015b; Despr�es-Einspenner et al. 2017). How-

ever, multiple research objectives can be addressed, and useful

data for multiple species obtained, if CTs are deployed

according to a randomised design (MacKenzie & Royle 2005;

Wearn et al. 2013; Burton et al. 2015; D�enes, Silveira & Beis-

singer 2015). The size of unmarked populations can then be

estimated from CT data, using Poisson and negative binomial

GLMs or hierarchical N-mixture models (D�enes, Silveira &

Beissinger 2015), but population density is of greater interest

because it is more biologically relevant and comparable across

studies. Densities of unmarked animal populations can only

be estimated from CT data using SECRmodels for unmarked

populations, the REM, or DS methods; the latter two require

randomised designs (Buckland et al. 2001; Rowcliffe et al.

2008). SECR methods for unmarked populations require

intensive designs, and even then estimates will often be too

imprecise to be useful unless a subset of the population can be

reliably identified (Chandler & Royle 2013; Saout et al. 2014).

The REM requires an estimate of the average speed of animal

movement, assumes that detection is certain within an estim-

able area in front of the camera, and makes use of only one

observation from each detected animal (Rowcliffe et al.

2008). Our point transect approach requires an estimate of

the proportion of time animals are available for detection,

assumes that detection is certain only at zero distance, and

multiple observations from each detected animal inform

detection probability estimates. We expect the extension of

point transect DS methods to provide an effective and effi-

cient tool for estimating animal density and to enhance the

information derived from CT surveys.
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