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Abstract
1.	 Distance	sampling	(DS)	 is	a	widely	used	framework	for	estimating	animal	abun-
dance.	DS	models	assume	that	observations	of	distances	to	animals	are	independ-
ent.	 Non-independent	 observations	 introduce	 overdispersion,	 causing	 model	
selection	criteria	such	as	AIC	or	AICc	to	favour	overly	complex	models,	with	ad-
verse	effects	on	accuracy	and	precision.

2.	 We	describe,	and	evaluate	via	simulation	and	with	real	data,	estimators	of	an	over-
dispersion	factor	(ĉ),	and	associated	adjusted	model	selection	criteria	(QAIC)	for	
use	with	overdispersed	DS	data.	In	other	contexts,	a	single	value	of	ĉ	is	calculated	
from	the	“global”	model,	that	is	the	most	highly	parameterised	model	in	the	candi-
date	set,	and	used	to	calculate	QAIC	for	all	models	in	the	set;	the	resulting	QAIC	
values,	and	associated	ΔQAIC	values	and	QAIC	weights,	are	comparable	across	
the	entire	set.	Candidate	models	of	the	DS	detection	function	include	models	with	
different	general	forms	(e.g.	half-normal,	hazard	rate,	uniform),	so	it	may	not	be	
possible	to	identify	a	single	global	model.	We	therefore	propose	a	two-step	model	
selection	procedure	by	which	QAIC	is	used	to	select	among	models	with	the	same	
general	form,	and	then	a	goodness-of-fit	statistic	is	used	to	select	among	models	
with	different	 forms.	A	drawback	of	 this	 approach	 is	 that	QAIC	values	 are	not	
comparable	across	all	models	in	the	candidate	set.

3.	 Relative	to	AIC,	QAIC	and	the	two-step	model	selection	procedure	avoided	over-
fitting	and	improved	the	accuracy	and	precision	of	densities	estimated	from	simu-
lated	data.	When	applied	 to	 six	 real	 datasets,	 adjusted	 criteria	 and	procedures	
selected	either	the	same	model	as	AIC	or	a	model	that	yielded	a	more	accurate	
density	estimate	in	five	cases,	and	a	model	that	yielded	a	less	accurate	estimate	in	
one	case.

4.	 Many	 DS	 surveys	 yield	 overdispersed	 data,	 including	 cue	 counting	 surveys	 of	
songbirds	and	cetaceans,	surveys	of	social	species	including	primates,	and	cam-
era-trapping	 surveys.	Methods	 that	 adjust	 for	overdispersion	during	 the	model	
selection	stage	of	DS	analyses	therefore	address	a	conspicuous	gap	in	the	DS	ana-
lytical	framework	as	applied	to	species	of	conservation	concern.
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1  | INTRODUC TION

Distance	sampling	 (DS)	 is	an	established	framework	for	estimating	
animal	abundance	(Borchers,	Buckland,	&	Zucchini,	2002;	Buckland	
et	al.,	2001,	2004).	It	allows	for	imperfect	detection	by	assuming	de-
tection	probability	is	a	function	of	the	distance	between	objects	(e.g.	
animals	or	their	sign),	and	observers.	Careful	modelling	of	this	func-
tion	 is	required	to	obtain	accurate	abundance	estimates	 (Buckland	
et	al.,	 2001,	 2004).	 Exploratory	 analyses,	 goodness-	of-	fit	 (GOF)	
testing,	 and	model	 selection	 are	 therefore	 critical	 components	 of	
DS	analyses	(Buckland	et	al.,	2001,	2004;	Marques,	Thomas,	Fancy,	
&	Buckland,	 2007).	GOF	 tests	 evaluate	 the	 null	 hypothesis	 that	 a	
model	adequately	fits	the	data;	tests	for	continuous	and	binned	DS	
data	were	described	by	Buckland	et	al.	 (2001).	Rejection	may	 indi-
cate	problems	in	the	data	or	the	structure	of	the	model	being	tested,	
or	violations	of	model	assumptions.	The	purpose	of	model	selection	
is	 the	 identification	of	a	model	or	models	 that	optimise	the	trade-	
off	 between	bias	 and	precision	of	 the	parameters	 estimated	 from	
a	 dataset,	 where	 the	 inclusion	 of	 more	 parameters	 reduces	 both	
bias	and	precision	(Burnham	&	Anderson,	2002;	Johnson	&	Omland,	
2004).	The	remainder	of	this	paper	assumes	readers	are	familiar	with	
both	distance	sampling,	and	information-	theoretic	model	selection,	
as	 described	 by	 Buckland	 et	al.	 (2001,	 2004),	 and	 Burnham	 and	
Anderson	(2002).

Distance	sampling	methods	assume	that	observations	are	inde-
pendent	 (Buckland	 et	al.,	 2001),	 but	 some	DS	 surveys	 violate	 this	
assumption.	For	example,	 some	animals	 travel	 in	groups.	Violation	
of	 the	 independence	 assumption	 can	 be	 avoided	 by	 treating	 the	
group	as	the	unit	of	observation,	measuring	or	estimating	distances	
to	the	centre	of	detected	groups,	and	estimating	animal	density	as	
the	product	of	group	density	and	mean	group	size	(Buckland	et	al.,	
2001).	However,	this	is	only	effective	if	the	size	and	central	location	
of	the	group	are	measured	accurately	(Buckland,	Plumptre,	Thomas,	
&	Rexstad,	2010;	Buckland	et	al.,	2001).	When	they	cannot	be,	for	
example,	 because	 groups	 are	 widely	 spread	 or	 in	motion,	 the	 re-
course	 is	 to	 treat	 the	 individual	as	 the	unit	of	observation,	and	 to	
record	distances	to	all	group	members	detected,	in	which	case	the	
data	include	non-	independent	observations.	Furthermore,	some	an-
imals,	such	as	cetaceans	that	are	often	submerged,	or	songbirds	that	
perch	 concealed	 in	 trees,	 are	 only	 available	 to	 be	 observed	 inter-
mittently.	However,	if	they	give	discrete	cues	of	their	presence	and	
location,	such	as	whale	blows	or	bursts	of	birdsong,	density	of	cues	
can	be	estimated	using	DS	methods,	and	converted	to	estimates	of	
animal	 density	 by	 dividing	 by	 the	 cue	 production	 rate	 (Buckland,	
2006;	Buckland	et	al.,	2001).	During	cue	counting	surveys,	distances	
to	 all	 cues	 are	 recorded,	 so	 the	 data	may	 include	 observations	 of	
distances	to	multiple	cues	given	by	the	same	animal(s),	which	again	
violates	 the	 independence	 assumption	 (Buckland,	 2006).	 Finally,	
Howe,	Buckland,	Després-	Einspenner,	and	Kühl	(2017)	extended	DS	
methods	to	accommodate	data	from	camera	traps	(CTs).	Distances	
to	animals	when	first	detected	by	CTs	are	expected	to	be	positively	
biased,	 so	 authors	 recommended	programming	 cameras	 to	 record	
video,	or	multiple	still	images,	each	time	the	sensor	is	triggered,	and	

measuring	distances	to	each	detected	animal	multiple	times	at	pre-
determined	“snapshot	moments”	during	an	independent	encounter	
with	 a	 CT.	 Authors	 acknowledged	 that	 these	 observations	 would	
not	be	 independent	of	each	other.	Violations	of	the	 independence	
assumption	 do	 not	 bias	 point	 estimates	 of	model	 parameters,	 but	
introduce	overdispersion	(Buckland	et	al.,	2001).

When	distance	data	are	overdispersed:	(a)	GOF	tests,	and	likeli-
hood	ratio	tests	(LRTs)	to	compare	the	fit	of	nested	models,	are	in-
valid	and	prone	to	reject	the	null	hypotheses	that	a	model	adequately	
fits	the	data	(GOF	tests),	or	that	the	simpler	of	two	models	provides	
a	better	 fit	 than	a	more	complex	one	 (LRTs);	 (b)	model-	based	ana-
lytic	variances	underestimate	the	actual	uncertainty	associated	with	
the	estimates,	though	empirical	design-	based	estimators	are	robust	
(Fewster	et	al.,	2009),	and	bootstrap	estimators	that	resample	points	
or	transects	are	unaffected	(Buckland,	1984);	(c)	model	selection	cri-
teria	 that	have	not	been	adjusted	for	overdispersion	favour	overly	
complex	models	with	more	than	the	optimal	number	of	parameters	
(Buckland	 et	al.,	 2001,	 2010;	 Burnham	&	 Anderson,	 2002;	 Cox	 &	
Snell,	 1989).	 Akaike’s	 Information	 Criterion	 (AIC;	 Akaike,	 1973)	 is	
usually	recommended	for	selecting	among	candidate	models	of	the	
detection	 function	 (Buckland	 et	al.,	 2004;	 Marques	 et	al.,	 2007),	
however,	 if	 the	data	 are	overdispersed,	AIC	 is	 likely	 to	 favour	un-
necessarily	complex	models	(Buckland,	2006;	Buckland	et	al.,	2001,	
2010).	This	additional	complexity	reduces	precision,	and	can	cause	
bias	if	it	affects	the	slope	of	the	detection	function	near	the	line	or	
the	point.	Criteria	adjusted	to	account	for	overdispersion	have	not	
been	developed	previously.

Detectability	may	vary	in	response	to	multiple	factors	other	than	
distance.	 DS	methods	 are	 pooling	 robust,	 so	 the	 total	 or	 average	
density	estimated	from	the	entire	dataset	will	generally	be	unbiased	
even	when	variation	 in	detectability	 is	 ignored	 (in	 the	 case	of	dif-
ferences	between	distinct	spatial	subsets	of	the	greater	study	area,	
sampling	effort	should	be	proportional	to	the	areas	of	the	subsets;	
Buckland	et	al.,	2004).	However,	density	estimates	specific	to	differ-
ent	population	strata	among	which	detectability	varies,	which	might	
be	 different	 species,	 treatments,	 habitat	 types,	 time	 periods,	 etc.,	
are	 expected	 to	 be	 biased	 if	 estimated	 from	 a	 common	detection	
function	(Buckland	et	al.,	2004;	Marques	et	al.,	2007).	Observations	
within	 different	 strata	 can	 be	 analysed	 separately	 to	 avoid	 this	
bias,	but	this	can	reduce	sample	sizes	to	the	point	where	densities	
of	some	strata	may	not	be	estimable,	or	estimates	may	be	too	 im-
precise	to	be	useful.	The	multiple	covariate	approach	to	DS	analysis	
improves	efficiency	by	modelling	variation	in	detectability	using	co-
variates	 (Buckland	et	al.,	2004;	Marques	et	al.,	2007).	 It	 also	casts	
decisions	 about	 how	 much	 stratification	 is	 necessary	 as	 a	 model	
selection	problem,	but	in	this	case,	the	quality	of	 inferences	about	
strata-	specific	densities	is	affected	by	the	reliability	of	the	model	se-
lection	criterion.	When	the	independence	assumption	is	suspected	
or	known	to	have	been	violated,	it	has	been	recommended	that	an-
alysts	 constrain	 the	 complexity	 of	 the	 detection	 function	 and	 the	
number	 of	 covariates	 to	 avoid	 overfitting	 (Buckland	 et	al.,	 2004,	
2010;	Marques	et	al.,	2007).	However,	limiting	the	candidate	set	to	
simple	models	may	not	be	desirable	 if	 there	are	multiple	potential	
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covariates	of	the	detection	function.	Model	selection	criteria	unad-
justed	for	overdispersion	will	 tend	to	select	models	that	subdivide	
the	 data	more	 than	 necessary,	 with	 adverse	 effects	 on	 precision.	
Conversely,	 “underfitting”,	 that	 is,	 failure	 to	 include	 significant	
sources	of	variation	in	the	estimating	model,	would	cause	stratum-	
specific	densities	to	be	underestimated	if	true	detection	probabili-
ties	in	that	stratum	tend	to	be	lower,	and	vice	versa.	Adjusted	criteria	
could	 underfit	 if	 they	 overcompensated	 for	 overdispersion	 (e.g.	 if	
the	magnitude	of	overdispersion	was	overestimated).

Although	 explicitly	 modeling	 the	 sources	 of	 overdispersion	
would	be	ideal,	this	is	not	always	possible	or	practical	with	real	data	
(Burnham	&	Anderson,	2002;	Cox	&	Snell,	1989;	Lebreton,	Burnham,	
Clobert,	&	Anderson,	1992).	An	approximation	that	is	often	sufficient	
in	practice	is	to	estimate	a	single,	omnibus	overdispersion	factor	(ĉ)	
from	a	χ2	GOF	test	of	the	global	model	(i.e.	the	most	highly	parame-
terised	or	most	general	model)	divided	by	its	degrees	of	freedom	(df),	
and	 to	 include	 ĉ	 in	 the	 calculation	of	 information	 criteria	 adjusted	
for	overdispersion	 for	 all	models	 in	 the	candidate	 set	 (Burnham	&	
Anderson,	 2001,	 2002;	 Cox	 &	 Snell,	 1989;	 Lebreton	 et	al.,	 1992;	
Liang	&	McCullah,	1993).	The	adjusted	version	of	AIC	(QAIC)	is:	

where	 log	L	 is	 the	 log	 likelihood	 value,	�	 is	 a	 vector	 of	maximum	
likelihood	parameter	estimates,	and	K	is	the	number	of	parameters	
in	the	current	model	(Lebreton	et	al.,	1992).	Burnham	and	Anderson	
(2001,	 2002)	 clarified	 that	 ĉ	 should	 be	 included	 as	 one	 of	 the	K 
parameters.

Given	an	estimator	of	c	(ĉ),	the	same	approach	could	be	used	to	
calculate	QAIC	for	models	of	the	DS	detection	function.	However,	
candidate	sets	usually	 include	models	with	different	general	forms	
(termed	“key	functions”;	for	example,	half-	normal,	hazard	rate,	and	
uniform;	Buckland	et	al.,	2001)	as	well	as	different	numbers	of	ad-
justment	 terms	and	covariate	combinations	 (Buckland	et	al.,	2004;	
Marques	et	al.,	2007).	Models	with	different	key	functions	are	not	
nested,	hence	it	may	not	always	be	straightforward	to	identify	a	sin-
gle	“global”	model	from	which	to	estimate	ĉ.	Below	we	propose	and	
evaluate	two	estimators	of	ĉ,	and	a	two-	step	model	selection	proce-
dure	that	does	not	require	that	a	single	global	model	is	identifiable,	
for	use	with	overdispersed	DS	data.

2  | MATERIAL S AND METHODS

2.1 | Model selection criteria and procedures

We	suggest	the	χ2	GOF	statistic	for	binned	distance	data	(Buckland	
et	al.,	2001,	p.	71,	eqn.	3.57)	divided	by	 its	degrees	of	freedom	as	
one	estimator	of	c	(ĉ1).	To	allow	for	the	possibility	that	multiple	mod-
els	may	 include	the	maximum	number	of	parameters,	and	the	fact	
that	DS	models	have	different	general	forms,	we	propose	the	follow-
ing	two-	step	model	selection	procedure.	In	step	one	we	use	QAIC	to	
identify	the	best-	supported	model	within	each	key	function,	and	in	

step	two	we	compare	the	GOF	of	the	best-	supported	models	with	
different	key	functions.	More	specifically,	in	step	one,	we	obtain	ĉ1 
from	the	most	highly	parameterised	model	within	each	key	function	
(rather	than	from	the	most	highly	parameterised	model	overall),	use	
those	values	of	ĉ1	to	calculate	QAIC	for	all	models	with	the	same	key	
function,	and	use	QAIC	to	identify	the	best-	supported	model	within	
each	key	function.	In	this	step,	the	same	value	of	ĉ1	is	used	to	calcu-
late	QAIC	for	all	models	with	the	same	key	function,	but	different	
values	of	ĉ1	are	used	to	calculate	QAIC	for	different	key	functions.	
In	step	two,	we	compare	values	of	the	χ2	GOF	statistic	divided	by	its	
df	across	QAIC-	selected	models	 (one	from	each	key	function),	and	
choose	the	model	with	the	smallest	value	for	estimation.	If	continu-
ous	distances	 are	 recorded	 in	 the	 field,	 distance	observations	will	
first	 need	 to	be	 grouped	 into	 categories	 so	 that	 the	GOF	 test	 for	
binned	data	can	be	performed.	See	Buckland	et	al.	(2001)	for	advice	
regarding	binning	continuous	observations.

The	number	of	distance	observations	recorded	per	independent	
encounter	between	an	animal	and	an	observer	provides	an	alterna-
tive	measure	of	the	magnitude	of	overdispersion	(ĉ2).	ĉ2	will	often	be	
calculable	from	the	raw	data,	and	will	be	the	same	for	all	models	in	
the	candidate	set.	In	CT	surveys	of	solitary	animals,	ĉ2	would	be	the	
mean	number	of	distance	observations	recorded	during	a	single	pass	
by	an	animal	in	front	of	a	CT.	In	surveys	of	social	animals	employing	
human	observers,	ĉ2	would	be	the	mean	number	of	detected	animals	
per	detected	group,	and	in	CT	surveys	of	social	animals	ĉ2 would be 
the	mean	number	of	distance	observations	recorded	during	an	en-
counter	between	a	group	of	animals	and	a	CT.	ĉ2	could	be	used	in-
stead	of	multiple	values	of	ĉ1	to	calculate	QAIC	values	as	in	step	one	
above.	QAIC	values	would	still	be	compared	only	within	key	func-
tions,	and	the	χ2	GOF	statistic	divided	by	its	df	would	still	be	used	
in	 step	 two	 to	 select	 among	QAIC-	selected	models	with	different	
key	functions.	Hereafter,	we	will	refer	to	QAIC	calculated	from	ĉ1	as	
QAIC1,	and	from	ĉ2	as	QAIC2.

2.2 | Simulations

We	 conducted	 simulations	 where	 non-	independent	 observations	
were	all	at	the	same	distance	so	that	we	could	evaluate	performance	
where	the	true	magnitude	of	overdispersion	(c),	and	the	true	under-
lying	model	were	known,	but	we	would	not	expect	this	scenario	to	
arise	in	practice.	When	non-	independent	observations	during	a	sin-
gle	independent	encounter	are	at	different	distances	(e.g.	to	differ-
ent	members	of	a	group,	different	cues	from	a	moving	animal,	or	as	
an	animal	moves	past	a	CT),	true	c	is	unknown	because	the	different	
distance	observations	contribute	information	about	the	shape	of	the	
detection	 function.	We	 therefore	 also	 simulated	 camera-	trapping	
(CT)	surveys	of	moving	animals	where	cameras	recorded	video	and	
distance	was	recorded	every	2	s	as	animals	moved	through	the	field	
of	view.	These	simulations	mimic	real	surveys	where	animals	move	
and c	 is	 unknown.	 Furthermore,	 the	 distribution	 of	 observed	 dis-
tances	differed	from	the	expected	distribution	of	 independent	de-
tections	(see	Supplemental	Material),	so	the	true	underlying	model	
was	also	unknown.

QAIC=−2

{

log L(�̂ )

ĉ

}

+2K,
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For	the	simulations	with	known	c,	we	sampled	distances	to	ani-
mals	within	a	circular	point	transect	with	radius	20	m,	where	the	true	
density	was	2.00/m2.	To	generate	independent	DS	data,	we	simulated	
detections	via	random	trials	where	detection	probability	declined	ac-
cording	to	a	half-	normal	function	with	scale	parameter	(σ)	of	7.	Each	
observation	was	arbitrarily	assigned	one	of	three	levels	of	a	spurious	
categorical	 covariate	 that	had	no	effect	on	detectability,	which	we	
will	refer	to	as	“observer”.	We	then	replicated	each	observation	five	
times	to	generate	overdispersed	data	with	c	=	6.	We	fitted	eight	point	
transect	DS	models	to	each	dataset,	including	the	half	normal	model	
used	to	generate	the	data,	and	overparameterised	models.

For	the	CT	surveys,	we	simulated	sampling	of	ungulates	inhab-
iting	 old	 growth	 forests,	 recently	 logged	 forests,	 and	 previously	
logged	 but	 regrowing	 forests.	 Simulation	 parameters	 were	 based	
on	Howe	et	al.’s	 (2017)	survey	of	Maxwell’s	duikers,	but	were	also	
selected	 to	 ensure	 that	 data	were	 overdispersed,	 not	 sparse,	 and	
included	multiple	potential	covariates	of	detectability.	We	assumed	
that	 the	 density	 of	 understorey	 vegetation	 increased	 immediately	
after	 logging	and	decreased	gradually	as	 forests	 regrew,	such	that	
food	supply	and	therefore	animal	density	was	highest,	but	detection	
probability	as	a	function	of	distance	was	lowest,	in	recently	logged	
forests;	we	further	assumed	a	larger	difference	in	detection	proba-
bility	between	old	growth	and	logged	forests	than	between	recently	
logged	and	regrowing	forests	(Table	1).

We	simulated	movements	of	10,	12	and	15	animals	within	1	km2 
study	areas	in	old	growth,	regrowing,	and	recently	 logged	habitats	
respectively.	Each	animal	started	with	a	random	initial	location	and	
heading,	 after	 which	 new	 locations	 were	 generated	 every	 2	s	 for	
12	hr.	 Step	 lengths	 were	 drawn	 from	 an	 exponential	 distribution	
with	a	rate	parameter	of	2,	and	turn	angles	were	drawn	from	a	nor-
mal	distribution	with	M	 of	0	and	SD	 of	0.05	 radians.	Animals	 that	
moved	beyond	the	boundaries	of	the	study	areas	reappeared	on	the	
opposite	side	of	the	same	study	area	at	the	same	heading.	We	sim-
ulated	 sampling	 at	 a	 grid	 of	 36	CTs	 at	 150	m	 spacing	within	 each	
study	area.	We	defined	the	zone	of	potential	detection	by	a	CT	as	
a	sector	with	a	central	angle	of	0.733	radians	and	a	radius	of	25	m,	
and	recorded	distances	between	CTs	and	animal	locations	that	fell	
within	these	sectors.	We	initially	conducted	random	trials	according	
to	a	half-	normal	function	with	σ	as	in	Table	1	to	determine	whether	
animals	were	detected	at	each	time	step.	However,	we	assumed	that	
cameras	were	programmed	to	record	video	when	triggered,	so	once	
an	 animal	was	 detected	we	 set	 the	 probability	 of	 subsequent	 de-
tection	to	1.0	for	as	long	as	the	animal	remained	within	the	sector.	

Therefore,	the	observed	distances	were	those	recorded	within	the	
sector	defined	by	the	location	and	angle	of	view	of	the	CT,	at	prede-
termined	snapshot	moments	after	initial	detection,	following	Howe	
et	al.	(2017).	Each	animal	travelled	10.7	to	11.0	km	in	a	meandering	
path	over	12	hr.	Most	step	lengths	were	between	0	and	0.5	m,	which	
ensured	 that	 animals	would	 be	observed	multiple	 times,	 including	
at	similar	distances,	during	each	independent	encounter,	and	hence	
distance	data	would	be	 severely	 overdispersed.	Density	 remained	
constant,	and	the	expected	distribution	of	animal	locations	was	uni-
form	within	each	study	area.

We	 analysed	 data	 from	 all	 three	 habitat	 types	 simultaneously	
using	multiple	covariate	distance	sampling.	Different	habitat	types	
were	 treated	 as	 different	 strata,	 with	 the	 potential	 to	 estimate	 a	
common	detection	function	across	all	strata,	or	to	model	differences	
in	detectability	among	strata	using	categorical	covariates	affecting	
the	scale	parameter	of	the	detection	function.	We	considered	a	hab-
itat	type	covariate	with	two	levels	(old	growth	or	 logged),	and	one	
with	three	levels	(old	growth,	regrowing,	and	recently	logged).	The	
36	cameras	 in	each	study	area	were	arbitrarily	assigned	 to	one	of	
three	different	CT	models	(12	of	each	type).	Detectability	therefore	
varied	 among	 habitat	 types	 (Table	1)	 but	 not	 among	 camera	 trap	
models.	Both	habitat	type	and	camera	trap	model	were	considered	
as	potential	 covariates	of	 the	detection	 function;	only	one	habitat	
type	covariate	was	included	in	any	model.	We	fitted	20	models	with	
either	 the	 half-	normal	 or	 the	 hazard	 rate	 key	 function,	 0	 or	 1	 co-
sine	adjustment	terms,	and	different	covariate	combinations	to	each	
dataset.

During	both	sets	of	simulations,	distance	data	were	binned	into	
intervals	prior	to	analysis.	Howe	et	al.	(2017),	were	confident	of	their	
assignments	of	 duikers	 into	1	m	 intervals	 out	 to	8	m,	but	 found	 it	
more	difficult	to	estimate	distances	to	this	level	of	precision	beyond	
8	m.	We	similarly	binned	data	into	one-	meter	intervals	out	to	8	m,	
and	at	10,	12,	15	and	20	m.	In	the	case	of	the	CT	survey	of	moving	
animals,	distance	observations	<1	m	and	>20	m	were	truncated.	We	
conducted	 500	 replicate	 iterations,	 recording	 the	 number	 of	 esti-
mated	 parameters,	 the	 log-	likelihood	 value,	 the	 estimated	 density	
( ̂D)	and	associated	empirical,	design-	based	variances	(Fewster	et	al.,	
2009),	and	the	χ2	GOF	statistic	and	its	df and p-	value,	from	all	mod-
els	 fit	 to	 each	 dataset.	We	 selected	 among	 candidate	 models	 by	
comparing	AIC	values	across	all	models	fitted	to	the	same	dataset,	
and	using	both	QAIC1	and	QAIC2	following	the	two-	step	procedure	
described	in	the	methods	section.	Simulations	were	performed	using	
r	software,	version	3.3.2	(R	Core	Team,	2016).

2.3 | Applications with real data

We	 applied	 the	 same	 model	 selection	 criteria	 and	 procedures	
used	in	the	simulations	to	real	data	from	Maxwell’s	duikers	in	Taï	
National	 Park,	 Côte	 d’Ivoire,	 originally	 presented	 in	 Howe	 et	al.	
(2017).	We	 also	 reanalysed	 point	 count	 data	 from	 singing	males	
of	 four	species	of	songbirds	sampled	at	Montrave	Estate	 in	Fife,	
Scotland,	originally	presented	 in	Buckland	 (2006).	The	Montrave	
study	area	was	small	enough	that	densities	of	singing	males	were	

TABLE  1 Animal	densities	(D)	and	scale	parameters	(σ)	of	a	half	
normal	detection	probability	function	in	different	habitat	types	
used	to	generate	simulated	distance	sampling	data

Forest type D σ

Old	growth 10 7.0

Regrowing 12 5.5

Recently	logged 15 5.0

Mean 12.33
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estimable	by	mapping	 their	 territories;	 these	estimates	were	ex-
pected	to	have	low	bias,	and	served	as	benchmarks	by	which	the	
accuracy	of	DS	estimates	were	assessed	(Buckland,	2006).	Aware	
of	the	potential	for	overdispersion	and	therefore	overfitting	with	
cue	 count	 data,	 Buckland	 (2006)	 did	 not	 consider	 models	 with	
>2	 parameters,	 and	 used	 a	 combination	 of	 AIC	 and	 plots	 of	 fit-
ted	probability	density	functions	and	detection	functions	to	select	
among	six	models	with	different	key	functions	and	numbers	of	ad-
justment	terms.	We	fitted	a	total	of	nine	models	to	each	dataset	
(uniform	with	1,	2	or	3	cosine	adjustment	terms,	half-	normal	with	
0,	1,	or	2	Hermite	polynomial	adjustment	terms,	and	hazard	rate	
with	 0,	 1,	 or	 2	 cosine	 adjustment	 terms)	 and	 used	 the	 two-	step	
procedure	with	QAIC1	to	select	among	them.	Truncation	distances	
and	 cut	 points	 for	 the	 χ2	 GOF	 test	 followed	 Buckland	 (2006).	
QAIC2	could	not	be	calculated	because	ĉ2	was	unknown.	We	used	
diagnostic	plots	only	to	 identify	and	exclude	implausible	models,	
such	as	 cases	where	estimated	detection	probabilities	 exceeded	
1.0,	 or	 fitted	 detection	 functions	 that	 were	 not	 monotonically	
nonincreasing.

3  | RESULTS

3.1 | Simulations

In	 simulations	 where	 c	 and	 the	 correct	 underlying	 model	 were	
known,	mean	sample	sizes	of	distance	observations	in	overdispersed	
datasets	was	3,630.	The	χ2	GOF	test	rejected	the	null	hypothesis	of	
adequate	fit	of	the	correct	model	for	492	of	500	datasets.	ĉ1 varied 
among	 iterations,	 but	 on	 average	 it	 estimated	 the	 true	magnitude	
of	overdispersion	reasonably	accurately	(mean	and	median	ĉ1	 from	
the	data	generating	model	were	6.16	and	5.73,	respectively;	true	c 
was	6.0).	AIC	selected	 the	most	highly	parameterised	model	most	
frequently,	selected	models	with	the	spurious	observer	covariate	for	
71.4%	of	datasets,	and	selected	the	correct	model	for	only	2.8%	of	
datasets	(Table	2).	QAIC	selected	the	correct	model	most	frequently,	
followed	by	the	hazard	rate	model	with	one	adjustment	and	no	co-
variates.	QAIC1	 and	QAIC2	 selected	models	with	 the	 spurious	 co-
variate	for	14%	and	13%	of	datasets	respectively	 (Table	2).	 ̂D	 from	
QAIC-	selected	models	was	 both	more	 accurate	 and	more	 precise	
than	 ̂D	from	AIC-	selected	models	(Table	3).

In	our	simulated	CT	surveys	of	moving	animals,	where	we	as-
sumed	 that,	 after	 initial	detection,	detection	probability	was	1.0	
for	as	 long	as	the	animal	remained	 in	the	field	of	view	of	the	CT	
(as	though	CTs	were	programmed	to	record	long	bursts	of	still	im-
ages	or	videos)	observed	distances	included	more	observations	at	
longer	 distances	 than	where	 animals	were	 detected	 via	 random	
trials	 at	 each	 time	 step	 (as	 though	CTs	were	programmed	 to	 re-
cord	a	single	image	when	triggered).	The	mode	of	the	distribution	
was	shifted	 right,	and	 the	number	of	observations	at	 longer	dis-
tances	declined	more	slowly	than	under	the	data	generating	model	
(Supporting	 Information	 Figure	 S1).	 These	 differences	 arose	 be-
cause	 detected	 animals	moving	 away	 from	 the	 CT	 continued	 to	
contribute	 observations	 at	 longer	 distances,	 where	 detection	
probability	would	otherwise	be	low.	As	a	result,	hazard	rate	mod-
els	 frequently	 provided	 a	 better	 fit	 than	 the	 half-	normal	 model	
from	 which	 the	 random	 detections	 were	 simulated	 (Supporting	
Information	Figure	S1).

The	χ2	GOF	test	rejected	the	null	hypothesis	of	adequate	fit	of	
89%	of	the	10,000	models	fitted.	Sample	sizes,	and	numbers	of	ob-
servations	per	independent	encounter	(ĉ2),	were	slightly	higher	in	old	
growth	forests	where	detection	probability	as	a	function	of	distance	
was	highest,	although	densities	there	were	lowest	(Table	4).	ĉ1	was	
generally	lower,	indicating	less	overdispersion,	than	ĉ2	from	a	given	
dataset	and	model;	ĉ1	was	also	more	variable	among	iterations	than	
ĉ2	(Table	4).

AIC	 again	 tended	 to	 select	 highly	 parameterised	 models.	
Density	was	not	estimable	from	the	AIC-	minimising	model	in	nine	
cases,	 and	 in	53	other	 cases,	 estimates	were	unrealistically	high	
(>10	times	the	true	density).	QAIC1	and	QAIC2	each	selected	mod-
els	from	which	density	was	not	estimable	twice,	and	from	which	

Models Model selection criteria

Key Covariates Adj. Parameters AIC QAIC1 QAIC2

hn None 0 1 14 248 238

hn Observer 0 3 54 21 29

hn None 1 2 9 32 39

hn Observer 1 4 92 9 4

hr None 0 2 1 30 29

hr Observer 0 4 8 1 2

hr None 1 3 57 120 127

hr Observer 1 5 265 39 32

TABLE  2 Number	of	times	each	
detection	function	model	fitted	to	
simulated,	overdispersed	data	from	
stationary	animals	was	selected	by	AIC,	
and	by	each	of	QAIC1	and	QAIC2	following	
the	two-	step	procedure	described	in	the	
methods	section,	of	500	replicate	
iterations.	“Key”	denotes	the	key	function,	
either	half-	normal	(hn)	or	hazard	rate	(hr);	
“Adj.”	denotes	the	number	of	adjustment	
terms

TABLE  3 Medians	of	density	estimates	( ̂D)	and	of	coefficients	of	
variation	(CV)	of	those	estimates,	from	models	fitted	to	simulated,	
overdispersed	data	from	stationary	animals,	selected	by	AIC,	and	
by	QAIC1	and	QAIC2	following	the	two-	step	procedure,	across	500	
iterations.	True	D	was	2.00

AIC QAIC1 QAIC2

Median	 ̂D 1.89 2.00 2.00

Median	CV( ̂D) 0.054 0.029 0.028
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density	was	severely	overestimated	4	times;	these	problems	were	
associated	 with	 the	 same	 six	 datasets.	 AIC	 favoured	 detection	
function	 models	 with	 more	 complex	 forms,	 selecting	 adjusted	

hazard	rate	models	for	49%	of	datasets,	and	either	unadjusted	haz-
ard	rate	or	adjusted	half	normal	models	for	another	45%,	whereas	
QAIC	 selected	 unadjusted	 hazard	 rate	 models	 most	 frequently,	

TABLE  4 Mean	(SD)	sample	sizes	(n)	of	distance	observations	and	numbers	of	observations	per	independent	encounter	(ĉ2)	from	each	
habitat	type	and	from	data	pooled	across	habitat	types,	and	mean	values	of	the	χ2	GOF	statistic	divided	by	its	degrees	of	freedom	(ĉ1)	from	
the	most	highly	parameterised	half-	normal	and	hazard	rate	models	fitted	to	the	pooled	datasets,	across	500	iterations

Old growth Regrowing Recently logged Pooled data

n 919	(149) 730	(134) 787	(130) 2,437	(246)

ĉ1	half-	normal – – – 6.70	(3.61)

ĉ1	hazard	rate – – – 8.57	(7.74)

ĉ2  16.8	(1.66) 14.8	(1.78) 14.2	(1.65) 15.3	(0.99)

TABLE  5 The	number	of	times,	of	500	iterations,	that	each	of	the	20	candidate	models	was	selected	by	each	model	selection	criterion,	
and	below	this,	the	number	of	times	each	of	four	forms	of	the	detection	function,	and	each	of	three	covariate	effects,	was	included	in	the	
selected	models.	“Key”	denotes	the	key	function,	either	half-	normal	(hn)	or	hazard	rate	(hr);	covariates	were:	Logging	(2),	with	differences	in	
detectability	between	logged	and	old	growth	forests,	Logging	(3),	with	differences	among	all	habitat	types,	and	camera	trap	model	(CT),	
which	did	not	affect	detectability;	“Adj.”	denotes	the	number	of	adjustment	terms

Models Model selection criteria

Key Covariates Adj. Parameters AIC QAIC1 QAIC2

hn None 0 1 0 8 26

hn Logging	(2) 0 2 0 52 104

hn Logging	(3) 0 3 3 34 19

hn Logging	(2)	+	CT 0 4 9 32 7

hn Logging	(3)	+	CT 0 5 20 14 3

hn None 1 2 0 0 0

hn Logging	(2) 1 3 3 37 28

hn Logging	(3) 1 4 6 22 5

hn Logging	(2)	+	CT 1 5 16 18 0

hn Logging	(3)	+	CT 1 6 71 13 0

hr None 0 2 0 45 70

hr Logging	(2) 0 3 2 106 182

hr Logging	(3) 0 4 15 48 35

hr Logging	(2)	+	CT 0 5 31 31 12

hr Logging	(3)	+	CT 0 6 79 18 1

hr None 1 3 0 0 0

hr Logging	(2) 1 4 4 11 8

hr Logging	(3) 1 5 28 2 0

hr Logging	(2)	+	CT 1 6 50 7 0

hr Logging	(3)	+	CT 1 7 163 2 0

Forms AIC QAIC1 QAIC2

hn	(0	adjustment	terms) 32 140 159

hn	(1	adjustment	term) 96 90 33

hr	(0	adjustment	terms) 127 248 300

hr	(1	adjustment	term) 245 22 8

Covariate effects AIC QAIC1 QAIC2

Logging	(2-	level) 115 294 341

Logging	(3-	level) 385 153 63

CT	model 439 135 23
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followed	by	unadjusted	half	normal	models	 (Table	5).	AIC	always	
supported	an	effect	of	habitat	type	on	detection	probability,	and	
supported	 the	 three-	level	 habitat	 covariate	 for	 77%	 of	 datasets	
(Table	5).	QAIC1	and	QAIC2	selected	models	with	habitat	type	co-
variates	for	89%	and	81%	of	datasets,	respectively,	but	tended	to	
favour	the	two-	level	covariate	(selected	for	59%	and	68%	of	data-
sets,	 respectively)	 over	 the	 three-	level	 covariate	 (Table	5).	Most	
(88%	of)	AIC-	selected	models,	27%	of	QAIC1-	selected	models	and	
5%	 of	 QAIC2-	selected	 models	 included	 the	 spurious	 CT	 model	
covariate	(Table	5).	Model	selection	uncertainty	across	 iterations	
was	 greatest	with	QAIC1	 (Table	5),	which	 is	 not	 surprising	 given	
the	variability	in	ĉ1	across	datasets	(Table	4).

QAIC2	 and	 the	 two-	step	 model	 selection	 procedure	 maxi-
mised	both	the	accuracy	and	precision	of	 ̂D	(Figure	1,	Supporting	
Information	 Table	 S1).	 AIC-	selected	 models	 yielded	 negatively	
biased	 ̂D	 on	 average	 (Figure	1).	 AIC-	selected	models	 yielded	 the	
most	accurate	 ̂D	only	in	recently	logged	forests	(Figure	1).	QAIC-	
selected	models	rarely	included	the	three-	level	habitat	covariate,	
and	as	a	result,	 ̂D	 in	recently	logged	forests,	and	differences	in	 ̂D 

among	habitat	types,	were	underestimated	(Figure	1,	Supporting	
Information	 Table	 S1).	 However,	 QAIC-	selected	 models	 yielded	
more	 accurate	 estimates	 of	 total	 density,	 and	 of	 density	 in	 re-
growing	and	old	growth	forests	(Figure	1).	QAIC2-	selected	models	
yielded	 the	most	 precise	 density	 estimates,	 followed	 by	QAIC1- 
selected	models	(Supporting	Information	Table	S1).

3.2 | Applications with real data

The	number	of	observations	of	Maxwell’s	duikers	per	independent	
encounter	(ĉ2)	was	15.35	during	the	daytime,	and	16.98	during	times	
of	peak	activity.	The	χ2	GOF	statistic	divided	by	its	df	(ĉ1)	from	differ-
ent	models	fitted	to	the	daytime	dataset	ranged	between	20	and	25,	
and	from	models	fitted	to	the	peak	activity	dataset	ranged	between	
12	and	35	(Supporting	Information	Tables	S2	and	S4).	Model	selec-
tion	 criteria	 and	 procedures	 adjusted	 for	 overdispersion	 selected	
the	same	models	as	AIC	for	estimation	from	each	dataset	 (the	un-
adjusted	hazard	rate	model,	see	Howe	et	al.,	2017	and	Supporting	
Information	Tables	S2–S5),	so	 ̂D	was	unaffected.

In	our	reanalysis	of	songbird	data	from	Montrave	Estate,	QAIC1 
did	not	consistently	outperform	either	AIC,	or	 the	combination	of	

F IGURE  1 Animal	densities	(on	y-	axes)	estimated	from	AIC-	,	
QAIC1-		and	QAIC2-	selected	models	fitted	to	simulated	distance	
sampling	data	collected	at	camera	traps	in	three	different	habitat	
types,	and	total	density	across	all	3	habitat	types.	Dashed	grey	lines	
show	true	densities.	Heavy	black	lines	show	medians	across	438	
and	494	AIC-		and	QAIC-	selected	models,	respectively,	from	which	
density	was	estimable	and	the	estimate	of	total	density	was	within	
an	order	of	magnitude	of	the	true	value.	Whiskers	extend	1.5	times	
the	interquartile	range	from	the	boxes;	outliers	were	excluded	from	
the	plots
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F IGURE  2 Densities	of	songbirds	at	Montrave	Estate	(on	y- 
axes),	estimated	from	models	selected	by	Buckland	(2006;	“B2006”	
on x-	axes),	AIC-	minimising	models,	and	models	selected	by	QAIC1. 
Densities	estimated	by	mapping	territories,	which	were	assumed	to	
have	low	bias,	are	shown	as	dashed	lines.	Error	bars	show	the	point	
estimate	±1	SE
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AIC,	a	constrained	candidate	model	set,	and	reference	to	diagnos-
tic	plots	employed	by	Buckland	(2006).	Model	selection	via	QAIC1 
yielded	a	superior	density	estimate	 for	European	robins,	 the	same	
estimate	as	Buckland	(2006)	for	winter	wrens	and	great	tits,	and	an	
inferior	 estimate	 for	 common	 chaffinches	 (Figure	1).	 See	 the	 sup-
plemental	material	 for	 a	 detailed	 description	 of	 the	 results	 of	 our	
reanalysis	 including	 comparisons	 to	 models	 selected	 by	 AIC	 and	
Buckland	(2006).

4  | DISCUSSION

Simulations	with	known	c	demonstrated	that:	(1)	AIC	was	prone	to	
overfitting,	 selecting	 unnecessarily	 complex	models,	 (2)	 ĉ1	was	 an	
accurate	if	variable	estimator	of	the	true	magnitude	of	overdisper-
sion	and	(3)	QAIC	and	our	two-	step	procedure	outperformed	AIC	in	
that	it	selected	the	correct	underlying	model	more	frequently,	and	
QAIC-	selected	 models	 yielded	 more	 accurate	 and	 precise	 ̂D	 than	
AIC-	selected	models.

Our	 simulations	 with	 animal	 movement	 were	 designed	 to	 be	
challenging	from	a	model	selection	perspective,	in	that	we	sought	
criteria	 and	 procedures	 that	 would	 support	 small	 but	 real	 dif-
ferences	 in	 detectability	 while	 excluding	 spurious	 effects	 from	
estimating	models.	AIC	consistently	supported	models	with	adjust-
ment	terms	although	density	was	sometimes	inestimable	or	drasti-
cally	overestimated	by	these	models,	and	models	with	a	covariate	
that	had	no	real	effect	on	detectability.	Associated	inferences	re-
garding	both	animal	abundance	and	sources	of	variation	in	detect-
ability	were	 flawed.	Models	 selected	 by	QAIC	 and	 our	 two-	step	
model	selection	procedure	included	fewer	adjustment	terms,	were	
much	 less	 likely	 to	 include	 the	 spurious	CT	model	 covariate,	 and	
yielded	more	 accurate	 and	 precise	 ̂D.	 Of	 the	 two	 proposed	 esti-
mators	 of	 the	magnitude	of	 overdispersion,	 the	mean	number	 of	
observations	per	independent	encounter	(ĉ2)	was	more	consistent	
than	 the	 χ2	 GOF	 statistic	 divided	 by	 its	 degrees	 of	 freedom	 (ĉ1).	
QAIC2-	selected	models	yielded	the	most	accurate	and	precise	den-
sity	estimates	on	average.

Relative	to	AIC,	QAIC	more	frequently	supported	models	where	
detectability	differed	between	old	growth	and	 logged	 forests,	but	
not	between	recently	 logged	and	regrowing	forests.	This	suggests	
that	QAIC	underfitted,	selecting	models	with	fewer	parameters	than	
the	 optimal	model.	 This	may	 not	 indicate	 that	 QAIC	will	 underfit	
generally	because	the	difference	in	detectability	between	recently	
logged	 and	 regrowing	 forests	 was	 slight.	 Furthermore,	 the	 effect	
of	certain	detection	after	initial	detection	on	the	distribution	of	ob-
served	distances	would	have	obscured	differences	between	study	
areas.	Sources	of	variation	in	detectability	that	have	small	effect	sizes	
may	 go	undetected	by	 any	model	 selection	 criteria.	Nevertheless,	
failure	 to	detect	and	support	 this	difference	 in	our	simulated	data	
caused	underestimation	of	density	where	detection	probability	was	
lowest.	The	difference	in	density	between	recently	logged	and	other	
forest	 types	 was	 therefore	 underestimated;	 however,	 differences	
among	all	three	habitat	types	were	still	apparent.

We	 applied	 model	 selection	 criteria	 and	 procedures	 “blindly”,	
in	that	we	always	estimated	 ̂D	from	the	model	that	minimised	AIC,	
or χ2/df	from	the	QAIC-	minimising	model	within	each	key	function.	
AIC	might	 have	 performed	 better	 if	 we	 had	 followed	 established	
practices	 for	DS	 analyses	 and	multimodel	 inference,	 including	 ex-
ploratory	analyses	of	 relationships	between	distance	observations	
and	covariates,	careful	examination	of	fitted	detection	functions	and	
associated	parameter	estimates,	and	consideration	of	ΔAIC	values	
and	AIC	weights	(Buckland	et	al.,	2001,	2004;	Burnham	&	Anderson,	
2002;	Marques	 et	al.,	 2007).	 Therefore	 our	 results,	 where	 adjust-
ing	for	overdispersion	improved	inferences	from	simulated	data,	but	
only	improved	inferences	from	real	data	in	one	of	six	cases,	as	well	
as	Buckland	et	al.’s	 (2010)	 simulation	 results,	 suggest	 that	adverse	
effects	of	overfitting	by	AIC	may	often	be	minor.	Furthermore,	our	
two-	step	approach	to	model	selection	using	QAIC	leads	to	the	se-
lection	of	a	single	model	for	estimation.	QAIC	values	are	not	com-
parable	 between	 key	 functions,	 so	 metrics	 like	ΔQAIC	 and	 QAIC	
weights	cannot	be	used	to	compare	relative	support	for	models	with	
different	key	functions,	or	to	estimate	detectability	by	model	aver-
aging	across	all	models	in	a	candidate	set	that	includes	different	key	
functions.

We	did	not	attempt	to	fit	density	surface	models	that	allow	
researchers	 to	 assess	 support	 for	 covariation	 between	 density	
and	 spatially	 referenced	 covariates	 (Hedley	&	 Buckland,	 2004;	
Miller,	 Burt,	 Rextad,	 &	 Thomas,	 2013).	 However,	 we	 note	 that	
such	analyses	can	be	performed	either	in	two	stages,	where	de-
tectability	 is	 estimated	during	 the	 first	 stage,	 and	plot-	specific	
counts	or	abundance	estimates	are	modelled	during	the	second	
stage,	or	by	maximising	a	full	 likelihood	model	whereby	param-
eters	related	to	both	detectability	and	local	abundance	are	esti-
mated	simultaneously	(Hedley	&	Buckland,	2004;	Johnson,	Laake,	
&	Ver	Hoef,	2010;	Miller	et	al.,	2013).	If	a	two-	stage	approach	to	
fitting	 density	 surface	models	 is	 adopted,	 any	model	 selection	
criteria	or	procedures,	 including	those	described	here,	could	be	
used	 when	 estimating	 detectability.	 It	 is	 therefore	 possible	 to	
account	for	overdispersion	in	the	distance	data	when	estimating	
the	detection	function,	and	still	fit	density	surface	models	to	test	
for	effects	of	spatial	covariates	on	density.	Johnson	et	al.	(2010)	
proposed	a	one-	stage,	model-	based	approach	for	simultaneously	
estimating	 detectability	 and	 spatially	 variable	 abundance	 from	
DS	 data.	 They	 also	 evaluated	 the	 effectiveness	 of	 an	 overdis-
persion	factor	calculated	from	a	χ2	test	performed	on	transect-	
specific	 counts	 for	 inflating	 model-	based	 variances	 around	
abundance	 estimates	 to	 account	 for	 overdispersion	 introduced	
by	fine-	scale	variation	in	local	abundance.	They	found	that	vari-
ances	were	still	underestimated	except	where	there	were	many	
transects,	 and	 suggested	 the	 χ2	 GOF	 test	 for	 binned	 distance	
data	divided	by	its	degrees	of	freedom	(our	ĉ1)	as	an	alternative	
estimator.	However,	 it	 is	not	clear	to	us	how	a	statistic	derived	
from	the	observed	distances	would	quantify	overdispersion	 in-
duced	by	variation	in	local	abundance,	and	we	prefer	to	use	this	
statistic	to	adjust	for	overdispersion	only	when	modeling	the	de-
tection	function.
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We	 analysed	 overdispersed	 data	 from	 simulated	 and	 real	 cue	
counting	and	CT	surveys;	however,	model	selection	criteria	adjusted	
for	 overdispersion	 could	 also	 be	 useful	 when	 social	 animals	 that	
travel	in	loosely	clumped	or	moving	groups	are	surveyed.	Buckland	
et	al.	(2010)	simulated	line	transect	sampling	of	primate	groups	and	
found	that	treating	the	individual	as	the	unit	of	observation	and	se-
lecting	among	models	of	 the	detection	 function	using	AIC	yielded	
more	accurate	and	precise	 ̂D	than	approaches	that	treated	the	group	
as	 the	 unit	 of	 observation,	 “despite	 obvious	 overfitting	 in	 some	
cases”	(p.	835).

5  | SYNTHESIS AND RECOMMENDATIONS

We	 described	 novel	 approaches	 to	 estimating	 an	 overdisper-
sion	factor	(ĉ),	and	QAIC-	based	procedures	for	selecting	among	
models	of	the	DS	detection	function	when	the	assumption	that	
observations	are	independent	is	violated.	These	novel	methods	
improved	 inference	 from	 simulated	 data.	 However,	 we	 con-
ducted	 limited	 simulations	 with	 severely	 overdispersed	 data,	
and	reanalyses	of	real	datasets	did	not	unambiguously	indicate	
that	 adjusting	 for	overdispersion	 at	 the	model	 selection	 stage	
improved	 inference.	 We	 therefore	 recommend	 additional	 re-
search,	 but	 also	 that	 these	 criteria	 and	procedures	 be	 consid-
ered	as	alternatives	to	AIC	when	the	independence	assumption	
is	violated.	They	are	most	likely	to	be	useful	where:	(a)	overfit-
ting	by	AIC	is	apparent	(e.g.	if	AIC	favours	models	that	include	
both	 adjustment	 terms	 and	 covariates,	 multiple	 adjustment	
terms,	or	weak	or	 imprecisely	estimated	covariate	effects);	 (b)	
it	 is	 not	 practical	 or	 not	 desirable	 to	 constrain	 the	 candidate	
set	to	include	only	simple	models	(e.g.	where	there	are	multiple	
potential	covariates	of	the	detection	function,	or	where	models	
with	unadjusted	key	functions	do	not	fit	the	observed	data	well)	
or	(c)	where	researchers	wish	to	avoid	subjectivity	during	model	
selection.
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