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Abstract

We develop and evaluate methods for inferring relatedness among individuals from

low-coverage DNA sequences of their genomes, with particular emphasis on

sequences obtained from fossil remains. We suggest the major factors complicating

the determination of relatedness among ancient individuals are sequencing depth,

the number of overlapping sites, the sequencing error rate and the presence of con-

tamination from present-day genetic sources. We develop a theoretical model that

facilitates the exploration of these factors and their relative effects, via measure-

ment of pairwise genetic distances, without calling genotypes, and determine the

power to infer relatedness under various scenarios of varying sequencing depth,

present-day contamination and sequencing error. The model is validated by a simu-

lation study as well as the analysis of aligned sequences from present-day human

genomes. We then apply the method to the recently published genome sequences

of ancient Europeans, developing a statistical treatment to determine confidence in

assigned relatedness that is, in some cases, more precise than previously reported.

As the majority of ancient specimens are from animals, this method would be appli-

cable to investigate kinship in nonhuman remains. The developed software GRUPS

(Genetic Relatedness Using Pedigree Simulations) is implemented in Python and

freely available.
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1 | INTRODUCTION

Genetic relatedness among individuals is a fundamental aspect of

human society upon which many of our laws, traditions and social

structures are based. But as such a general concept, precise descrip-

tions of genetic relatedness are elusive, and various definitions have

been proposed. For our purposes, related individuals share at least

one allele that is recently identical by descent (IBD). As members of

a homogenous population are ultimately related by their ancient,

common genetic ancestry, we examine only relationships whose

genetic affinity is beyond the background relatedness of an entire

population.

It follows from basic statistical genetics that closely related indi-

viduals share large fractions of their genomes IBD. For example, on

average, siblings are expected to share in common 50% of their gen-

omes IBD. This degree of relatedness can be expressed as r, the

coefficient of relationship (e.g., r = .5 in the case of sibling and par-

ent–offspring relationships), which expresses the probability that, at

a given locus, an allele randomly selected from each of two individu-

als will be shared by IBD. But this measure of relatedness is only a

probability; due to the stochastic nature of meiotic recombination,

the actual proportion of the genome that is shared between relatives

varies across the genome and between pairs with the same kinship

(Speed & Balding, 2014; Weir, Anderson, & Hepler, 2006).
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Precise quantification of relatedness is useful in a variety of

cases. For example, in the field of forensic genetics, it is routine to

employ microsatellite or single nucleotide polymorphism (SNP) mark-

ers to determine the relatedness of genetic samples for paternity

testing and to search for matches to genetic profiles attained from

crime scenes (Evett & Weir, 1998; Weir et al., 2006). An accurate

quantification of intersample relatedness is also a prerequisite for

most population genetic analyses, which often establish the probabil-

ities of observing sampled genotypes under the assumption that

individuals are genetically unrelated.

Due to rapid progress in next-generation sequencing (NGS) tech-

nologies, large quantities of genomic sequences can now be obtained

quickly and relatively cheaply. There exist various methods to quan-

tify individual relatedness using genomic sequences (e.g., see Wang

(2011) for a nonexhaustive list). The simplest of these calculate gen-

omewide averages across a panel of single-SNP haploid or diploid

genetic distances (Tal, 2013) or allele-sharing coefficients (Pember-

ton, Wang, Li, & Rosenberg, 2010; Speed & Balding, 2014). More

advanced methods identify IBD regions as shared haplotype seg-

ments within densely spaced, preferably unlinked genomic markers,

and then infer relationships from the total proportion of IBD

(Browning & Browning, 2007, 2010; Gusev et al., 2009; Hill &

White, 2013; Kong et al., 2008; Purcell et al., 2007). The most

advanced methods can detect distant relationships up to the 9th

degree, yielding probabilities of relatedness conditional on the total

IBD, as in previous methods, as well as additional information includ-

ing the number of IBD chromosomal segments, their lengths and the

genotypes they contain (e.g., Albrechtsen et al., 2009; Huff et al.,

2011; Li et al., 2014). Useful as these methods are, most require

high-quality, high-depth sequences that are not always available, par-

ticularly for sequences obtained from fossils in which little endoge-

nous DNA remains.

NGS approaches can also be applied to degraded, archival and/or

ancient DNA (aDNA) samples, especially since the advent of in situ

hybridization capture technology (e.g., John & Quinn 2008; Briggs

et al. 2009; Bahcall 2013). Indeed, numerous recent studies reported

low-coverage genomic sequences from ancient human specimens

(e.g., Allentoft et al., 2015; Haak et al., 2015; Lazaridis et al., 2014),

and many more still are underway. This trend is due in part to

advances that mitigate post mortem chemical damage of DNA and

contamination from present-day DNA, both of which introduce

errors when calling genotypes from reference-aligned sequences and

have created problems in the field since its earliest days (Briggs

et al., 2007; Ginolhac, Rasmussen, Gilbert, Willerslev, & Orlando,

2011; Shapiro & Hofreiter, 2012; Willerslev & Cooper, 2005).

Accurate determination of relatedness within ancient human

archaeological contexts could elucidate prehistoric family structure

as well as social behaviours such as burial practices, insights that

could not be determined without genetic data. But previous applica-

tion of these relatedness determination methods to degraded/an-

cient samples has been limited, usually leading to the exclusion of

related individuals from further analysis (Green et al. 2010; Lazaridis

et al. 2014; Haak et al., 2015). Without a statistical model to

account for the presence of contaminating DNA from present-day

humans, precise inference of individual relatedness is complicated

due to the unknown consequences of contamination on relatedness

estimation, and often very contaminated samples are excluded from

further analysis (Hofreiter, Serre, Poinar, Kuch, & Paabo, 2001; Yang

& Watt, 2005).

These more recent data sets motivate the development of meth-

ods to determine relatedness within real archaeological contexts. In

this study, we seek to determine the limitations for discriminating

close genetic relationships using very low-coverage NGS sequences.

Although genomewide average genetic distance is perhaps the crud-

est statistic for estimating relatedness, it can be determined directly

from randomly sampled NGS sequences and may be a good option

for low-coverage data sets.

We carried out simulations of simple pedigrees using present-

day human genome sequences, allowing us to characterize the distri-

bution of genetic distances for several familial relationships under

realistic scenarios of contamination, sequencing error and sequencing

depth. We aimed specifically to determine the upper bounds of

allowed sample contamination and lower bounds of NGS sequence

depth necessary to infer the degree of relatedness between individ-

ual ancient humans. We validated the simulations first with theory

and then with direct measurements of pairwise genetic distance

from aligned NGS data. Finally, we used simulations to verify relat-

edness claims from previously published ancient human genomic

sequences from European archaeological samples dated to between

5,311 and 1,780 BCE (Haak et al., 2015), determining the most likely

coefficient of relationship and, in some cases, revealing relatedness

that had gone unreported.

2 | MATERIALS AND METHODS

2.1 | Genomic sequences for pedigree simulations

For pedigree simulations, we used 77,818,345 diallelic single nucleo-

tide polymorphisms (SNPs) in the autosomes of the human reference

genome (build 37) and tracked their transmission from parents to

offspring. The occurrence of these SNPs in present-day populations

and individuals was obtained from the phase 3 data release of the

1,000 Genomes Project (G1K hereafter; Abecasis et al., 2010, 2012).

Insertion/deletion variants were ignored. Phased genome sequences

of 503 unrelated individuals from the European (EUR) super-popul-

ation were included in pedigree simulations. Allele frequencies in the

African (AFR) super-population were used for simulations of contam-

ination from a different population.

2.2 | Pedigree simulations using present-day human
genomic sequences

Simulations were carried out using custom Python scripts. In each

simulation replicate, we constructed a family pedigree starting with

the unrelated EUR individuals. Each “mating” of two individuals gen-

erated an offspring individual with 22 autosomal chromosomes

2 | MARTIN ET AL.



produced by recombination of parent haplotype sequences randomly

selected from all possible combinations of gametes. The probabilities

of recombination events in intervals along each chromosome were

nonuniform and determined using a genetic map (IHMC, 2007; Kong

et al., 2002). Offspring individuals were then “mated” with other

individuals to produce offspring in accordance with the desired pedi-

gree (Figure 1). Replicates (n = 1,000 in this study) of the same pedi-

gree were generated through random selection of the unrelated

initial mating couple. The per-generation mutation rate was assumed

to be small enough to ignore, and transmission of sex chromosomes

was not simulated.

2.3 | Simulation parameters and calculations of
pairwise genetic distance

Input to the model includes seven major parameters that can be

modified at run-time. (i) The source population (e.g., the European

super-population EUR) from which random genome sequences are

selected for pedigree simulation. (ii) The minimum allele frequency of

chosen SNPs in the source population in order for a genome posi-

tion to be included in the SNP panel. (iii) The rate at which genome

positions harbouring known SNPs (within the set of all G1K individu-

als) are randomly selected, which is used to construct a SNP panel

of particular size. (iv) Individual-specific mean sequencing depths at

targeted genome positions, modelled as the rate of a Poisson distri-

bution. Only sites with simulated sequence depth ≥1 in both individ-

uals can be considered in calculation of pairwise differences; thus,

modification of this parameter affects the number of sites where

overlapping sequences enable an assessment to be made. (v) Individ-

ual-specific sequencing error rates, modelled as the rate at which

the observed nucleotide is not correct, with the erroneous nucleo-

tide chosen with equal probability from the three remaining possibili-

ties. (vi) Individual-specific rates of contamination by user-selected

super-populations, simulated by randomly sampling alleles at a con-

tamination rate c from a pool with the allele frequencies of the con-

taminant super-population. Contamination by a specified number of

individuals randomly chosen from the contaminant super-population

is also implemented. (vii) A heterozygosity down-sampling parameter

that randomly chooses SNPs for which to reduce the minor allele

frequency in the pedigree population to zero, enabling simulation of

pedigrees from populations with mean heterozygosity lower than

that of the simulation source population.

Each individual-specific parameter for sequencing error rate, con-

tamination rate and mean sequencing depth can also be expressed

as a range. In this case, during each pedigree replicate, the model

generates a user-selected number of parameter replicates. For each

parameter replicate, the simulated values of these parameters are

randomly selected from uniform distribution within a range input by

the user. In our explorations of uncertainty in sequencing error, five

random parameter replicates were generated for each pedigree simu-

lation (n = 1,000), generating distributions containing a total of

5,000 replicates.

Once genetic data are simulated for a given scenario, the model

computes pairwise differences between individuals with particular

relationships and reports genetic distance as the mean number of

mismatches at the randomly selected panel of variant positions. The

distributions of simulated genetic distances were used to assess

power to discriminate between different coefficients of relationship r

under various scenarios. As the simulated genetic distances could

not necessarily be assumed to conform to normal distributions, we

chose to estimate overlap between distributions of simulated genetic

distance for each pair of relationships with the Bhattacharyya coeffi-

cient. The possible values of this coefficient exist in the range 0–1

and indicate 0–100% overlap (Bhattacharyya, 1947):

BCðv; sÞ ¼
Xn

i¼1

ffiffiffiffiffiffiffi
visi

p
; (1)

where v and s are the distributions under comparison, n is a chosen

number of bins, and vi and si are the number of samples falling

within bin i. We chose a somewhat arbitrary number of uniform bins

equal to the number of combined data points in the pair of distribu-

tions, divided by 10 (e.g., n = 2000/10 = 200). In these pairwise

tests of relationship overlap, a cut-off value of BC ≤ 0.05 was used

to determine significant separation of two relationships. For relation-

ships with identical expected values of r, statistical testing and com-

parisons were performed conservatively on the relationship with the

largest actual variance.

2.4 | Theoretical expectations

The joint probability of genotype pairs at a diallelic locus within an

outbred population is summarized by Slatkin (2008). Considering an

ancient and a contaminating present-day population, the joint proba-

bilities of sampling genotype pairs (one from each population)

F IGURE 1 Diagram of the family pedigree used for simulations
and quantification of genetic distance between various relationships.
Solid connecting lines indicate haploid parental contributions to
offspring. Dashed connecting lines indicate the following genetic
relationships simulated throughout the study: (A) unrelated. (B)
Parent–offspring. (C) Siblings. (D) Avuncular (uncle–nephew). (E)
Grandparent–grandoffspring. (F) Half-siblings. (G) First cousins. (H)
Self (or equivalently, identical twins). All individuals are unrelated
unless otherwise indicated
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depend on the ancient population allele frequency pA and the con-

taminating population allele frequency pC. Applying Hardy–Weinberg

expectations, we demonstrate the derivation of a formula for E[M],

the expected value of the probability M of observing mismatching

nucleotides between single sequences sampled from two samples

from the same population—each contaminated at known rates c1

and c2 by a contaminating population and subject to sequencing

error q (eqn 9, Supplementary Materials & Methods). When q = 0

and c1 = c2 = 0, the mean expected value of pairwise genetic dis-

tance assessed between identical twins or between two samples

generated from the same individual reduces to MS = pA (1 � pA).

Similarly, the expected value for parent–offspring and sibling–sibling

relationships is (3/2 MS). The expected value for grandparent–grand-

child, avuncular (i.e., uncle–nephew) and half-sibling relationships is

(7/4 MS), and between cousins, it is (15/8 MS). Finally, under these

assumptions, the expected value of genetic pairwise distance

assessed between unrelated individuals is 2MS.

2.5 | Direct observations of genetic distance from
published genomic sequences

Binary sequence Alignment Map (BAM) files from the G1K phase 3

data release were obtained from the G1K data repository (www.

1000genomes.org/data), and likely PCR duplicate sequences were

removed using the MarkDuplicates function implemented in PICARD

tools version 1.130 (http://broadinstitute.github.io/picard). BAM files

from Lazaridis et al. (2014) and Haak et al. (2015) were obtained

from the European Nucleotide Archive (accession numbers

PRJEB6272 and PRJEB8448). We used MAPDAMAGE2.0 version 2.02

(J�onsson, Ginolhac, Schubert, Johnson, & Orlando, 2013) to mitigate

residual DNA damage by processing each BAM file using default set-

tings. This software fits a position-specific aDNA damage model

from Briggs et al. (2007) to aligned genomic sequences, recalibrating

base quality scores so that they more accurately represent each

base’s probability of being erroneous.

For each pairwise comparison, SAMTOOLS version 0.1.19 (Li et al.,

2009) was used to convert aligned sequences to pileup format,

excluding sequences with Phred-scaled mapping quality scores <30

as well as bases quality scores <30. The pileup file was passed to a

custom Python script that calculated the mean number of pairwise

differences observed at a provided panel of target genomic posi-

tions, without need for genotype calling, by randomly selecting one

nucleotide from the observed nucleotides of each individual. In tabu-

lating these counts, deletions and insertions in NGS sequences were

removed from the pool of observations before random sampling.

When running the script in transition–filtration mode, transitions

were removed, as were sites where an individual carried an allele

unobserved in the called genotypes of G1K present-day human pop-

ulations. Self-comparisons within a single individual further necessi-

tate that at least two sequences must be observed at a given

position. To mitigate possible biases in self-comparisons of low-cov-

erage individuals, a randomly drawn sequence was never compared

against itself. Replicates of direct observations of genetic distance,

each generated by randomly sampling from available sequences,

were used to determine a distribution of observations, enabling the

calculation of a variance about the mean value.

2.6 | Determination of relatedness from direct
observations of genetic distance

Pedigree simulations (n = 500) were conducted to assist in determin-

ing the relatedness of individuals using direct observations of pair-

wise genetic distance from their aligned sequences. A pileup file

containing all sequences was supplied to the model, and the calcula-

tion of genetic distance in both the simulated and observed data

was carried out only at sites where sequences passed the same

user-selected filters (possibly including base quality, sequence depth,

transitions, allele frequency). This step enables calculation of genetic

distance at precisely the same positions in both simulations and

direct observations, generating distributions of genetic distance that

were specific to the pairwise comparisons being conducted. Contam-

ination was not parameterized in our simulations as the aDNA sam-

ples considered were all characterized by contamination rates <2%.

To reduce the impact of aDNA damage, in all analyses with ancient

samples, sequences at a particular target site were excluded unless

they matched an allele known from the G1K panel.

We assigned a most likely coefficient of relationship r to each

BAM-based distribution of observed pairwise genetic distance by

calculating the probability of making those observations given the

simulated genetic distances for each relationship. For each simulated

test relationship, we first conducted one-sample Kolmogorov–

Smirnov tests (Conover, 1971), using a critical p-value of .01 to

determine whether simulation replicates could be approximated as a

normal distribution. Although in theory skewness increases with

more distant relatedness and none of these relationships should con-

form to true normal distributions (Hill & Weir, 2011), in our tests, a

normal distribution was never rejected. Thus, for convenience, we

proceeded to assign a relationship-specific z-score to the mean of

our direct observations by assuming it was drawn from a normal dis-

tribution with mean and standard deviation equal to the empirical

mean and standard deviation of simulated genetic distances for each

relationship. The most likely coefficient of relationship among those

considered was identified by the smallest z-score (absolute value).

We used odds ratios (ORs) to assess confidence in our choice of

the most likely coefficient of relationship. Using normal densities as

proxies for the density functions of the simulated genetic distances,

the probability pObs of the mean BAM-based direct observation

within each relationship was calculated as the one-tailed probability

of making an observation further from the mean of that relation-

ship’s probability distribution. Then, an OR was calculated as the

odds of the most likely relationship (pObs,R1/(1 � pObs,R1)) divided by

the odds of the second-most likely relationship (pObs,R2/(1 � pObs,

R2)). The most likely relationship was considered confidently deter-

mined if OR > 100. Otherwise, a new OR was calculated between

the most likely relationship and the third-most likely relationship,

and so on, until an OR > 100 was obtained.
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3 | RESULTS

3.1 | Confirmation of theoretical expectations of
pairwise genetic distance

We performed 100 simulations of a simple pedigree (Figure 1) so

that the genetic distance between differently related individuals

could be characterized and compared. We investigated the following

relationships between individuals who were assumed to be outbred:

(A) unrelated, (B) parent–offspring, (C) siblings, (D) avuncular (e.g.,

uncle–nephew), (E) grandparent–grandoffspring, (F) half-siblings, (G)

first cousins and (H) self. In a practical case described later, simula-

tions were compared to real genome sequences, and a ninth

relationship was examined.

The simulations confirmed our theoretical expectations for the

number of pairwise differences per site under scenarios with varying

sequencing error rate (0% to 10%), sample-specific mean sequencing

depth (0.19 to 10.09) and contamination rate by present-day

humans (0–75%; Fig. S1). Our simulations generally confirm theory

and previous observations of nonequal variance of genetic distances

between individuals whose relationship has the same expected value

(Hill & Weir, 2011; Speed & Balding, 2014). For example, although

sibling and parent–offspring relationships have equal expected values

for the proportion of the genome IBD, replicates of the sibling rela-

tionship achieve a wider range of genetic distances. Despite their

identical expected values, a higher variance was also observed in the

grandparent–grandchild relationships in comparison with half-sibling

or avuncular relationships.

3.2 | Effects of the number of target SNPs and
their allele frequencies

One of our primary interests was to determine the number of SNP

positions necessary to determine relatedness coefficients using SNP

capture approaches. To this end, we performed simulations assessing

pairwise distances using randomly selected SNPs ranging in number

from 3 M to 3 k. With the resulting genetic distances, we used the

estimated overlap of each pair of seven test relationships to approxi-

mate the separability of the relationship pair. For a hypothetical

genetic distance observed between relatives under the simulation

parameters, this overlap estimates the probability that the observa-

tion could be incorrectly assigned to an overlapping coefficient of

relationship rather than to the correct one, or that it could not be

assigned confidently to either of the two values of r. The simulations

confirm our expectation that assays with larger numbers of SNPs

have more power to discriminate among close relationships

(Fig. S2a-d). These tests show that whereas a panel of 3 k randomly

selected SNPs is adequate only for reliably discriminating (5% level,

i.e., BC < 5%) siblings from completely unrelated individuals or iden-

tical individuals from any other relationship, 3 M randomly selected

SNPs, sequenced to a depth of 10X, are capable of distinguishing all

tested relatedness values except r = .25 from r = .125.

A majority of human genetic variation exists at very low fre-

quency within populations, and as such, selection of the SNP panel

likely has important consequences for relationship determination.

Rather than selecting SNPs randomly, assaying only variants at some

minimum frequency should grant greater discriminatory power. To

demonstrate, we replicated the previous simulations while requiring

the randomly selected SNPs to have a minor allele frequency

(MAF) ≥ 5% in the EUR super-population. Our simulations confirm

that the power to discriminate among relationships is higher when

assaying SNPs at higher frequencies in the population of interest

(Fig. S2e–h).

3.3 | Effects of mean sequencing depth

To determine how our ability to discriminate between close relation-

ships using genetic distance is influenced by mean sequencing depth,

we performed simulations while varying the mean depth parameter

from 10.009 to 0.059 (Figure 2). For our panel of 300k SNPs, there

is a major loss of relatedness separability at depths lower than 0.59.

These simulations demonstrate that reduction in sequencing depth

reduces the discriminatory power of pairwise genetic distance by

effectively decreasing the number of overlapping sites that achieve

the minimum sequence depth in both individuals under comparison.

However, we show that r = 1.00 can be distinguished from all other

tested values even down to 0.059 sequencing depth.

3.4 | Effects of sequencing error

Our simulations demonstrate that error rates in sequence assess-

ment (assignment of incorrect bases to DNA sequences) in the range

of 0–10% have very little influence on the power to discriminate

between close relationships when using a panel of 300k SNPs with

MAF ≥ 5% (Fig. S3a-d). Sequencing error increases the per-site

genetic distance between individuals, but the effects were still quite

small, with a slightly stronger influence on discrimination when using

panels of 300k SNPs that were not filtered for a minimum MAF

(Fig. S3e-h). Even in the comparison of samples with vastly different

error rates, sequencing error did not greatly change the power to

discriminate among different values of r (Fig. S4).

We also investigated how not knowing the exact value of the

sequencing error parameter might impact power in relatedness dis-

crimination. To capture this uncertainty effectively requires integra-

tion over the range of possible values of the error rate during

simulation. In our simulations, small, realistic ranges of uncertainty

produce distribution overlaps on the order of those seen in simula-

tion with realistic exact error rates around 0.1% (Fig. S5). However,

larger uncertainty (0–10%) in the error parameter yields distributions

of genetic distance that overlap far more than in simulations with an

exact error rate of 10%. Thus, we conclude that for discriminating

between possible values of r, to some degree certainty in the

sequencing error parameter is more important than the relative value

of the actual sequencing error rate (Figs S3, S5).
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3.5 | Effects of contamination by populations and
individuals

Next, we performed simulations designed to demonstrate the effects

of contamination of a sample by DNA from a foreign, present-day

population. Our results show that sample contamination has a strong

effect on the power of pairwise genetic distance to discriminate

between possible relatedness coefficients (Figure 3a–d). As contami-

nation approaches 100%, pairwise genetic distances between indi-

viduals of any relationship approach the mean genetic distance

between unrelated individuals in the contaminant population. The

major effect of increasing the contamination rate of all samples is to

increase the genetic distances between related individuals and to

decrease the separability of distributions (for several values of r).

However, the effect was weak even at moderate levels of contami-

nation. Indeed, assaying 300k sites above 5% frequency in EUR pro-

duces enough relative difference in genetic distance to discriminate

at the 0.01% level all but one pair of simulated values of r even in

the presence of 50% contamination by a foreign population. Related-

ness discrimination was also inversely related to the extent of con-

tamination when samples had unequal rates of contamination, and

the effect scaled with the total fraction of contamination within the

two samples (Fig. S6a–c).

Our derived theoretical expectations ignore relatedness in the

contaminating population. In the most likely scenarios, a single indi-

vidual (molecular biologist or archaeologist) would contaminate each

sample, which might produce a very different signature of pairwise

relatedness. We investigated this by performing simulations in

which the reads from each ancient individual in the comparison are

contaminated by the genotypes of a single, random contaminating

individual from the AFR super-population. We observe that low

rates of contamination by a single individual resemble equal rates

of contamination by population allele frequencies (Figure 3e–g,

Fig. S6d–f). However, at very high rates of contamination (≥ 75%),

contamination by a single individual further reduces the separability

of distributions of genetic distance by skewing them towards

shorter genetic distances. The underlying cause for this is that con-

tamination by a single present-day individual increases the probabil-

ity of sampling the same contaminant allele in the ancient

individuals under comparison.

3.6 | Confirmation of the method using aligned
sequences

To test our method on real genomic sequences, we used publicly

available low-coverage aligned Illumina sequences published by the

G1K. For example, we assessed all pairwise and self-comparisons in

a subset of six individuals from the Tuscan (TSI) population. This

subset contained a known pair of siblings and otherwise unrelated

individuals. Mean sequence depth for the seven genomes ranged

from 49 to 89. Where overlapping sequence data permitted, we

examined 77,818,345 sites known to harbour a SNP variant in pre-

sent-day human populations. A mean of 58.3M SNP sites could be

assessed in these pairwise comparisons. Pairwise comparison of the
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F IGURE 2 Pedigree simulations demonstrate the influence of mean sequence depth on power to discriminate relatedness using pairwise
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sibling pair (NA20526/NA20792) yielded the expected value of

approximately 150% of the within-individual comparisons (Fig. S7).

To further validate observations of pairwise genetic distance

within the Tuscan population, we conducted simulations of simple

pedigrees using randomly selected EUR genomes and reproducing

the observed sequence depths. The simulations show that the

genetic distances observed directly from the G1K aligned sequence

data fall within the distributions of genetic distance from simulations

(Figs S8, S9). In the majority of cases, ORs for relatedness r = 0 ver-

sus r = .125 were >102. ORs for r = 1 in simulated self-comparisons

were very highly significant (ORs > 1018).

Our method could discern the proper degree of relatedness in

the known sibling relationship of individuals NA20526 and

NA20792, assigning the observed genetic distance to a simulated

distribution for r = .50 with a highly significant OR > 108.

3.7 | Applications to SNP capture in genomes from
archaeological samples: Case 1

We obtained BAM files from Haak et al. (2015), which made avail-

able aligned sequences for numerous sets of individuals from the

same archaeological site/horizon and sometimes dated to narrow

time intervals (Table 1). Sequences from a panel of 380,000 SNPs

previously ascertained in present-day human populations were cap-

tured and enriched in these samples. Close relationships have been

reported in the Haak et al. (2015) in some cases, although the exact

relationships have not been determined. We observed elevated A/G

and C/T mismatches likely related to residual deamination from

aDNA damage in aligned sequences for these ancient individuals, so

we analysed only known transversion SNPs.

Initially, we assessed genetic distances between individuals from

the Esperstedt (ESP) site in Germany. These samples dated to

~2,500 BCE and consisted of four individuals sequenced to depths

ranging from 0.59 to 4.09 at the target SNP sites and low esti-

mated nuclear genome contamination rates in the range 0.3–3.5%.

Using a minimum depth of two sequences per site, the number of

genomic sites where pairwise comparisons could be assessed ranged

from 3,000 to 49,000. The self-comparison and pairwise comparison

values are consistent between different Esperstedt individuals,

excepting ESP2/ESP29 and ESP3/ESP3 (Figure 4). While all other

individuals appear unrelated, genetic distance alone allows us to pre-

dict a parent–offspring or sibling–sibling relationship between ESP2

and ESP29. Haak et al. (2015) used genetic distances to report that

these individuals “form a small group and appear to be genetically

closely related,” but simulations are necessary to determine the pre-

cise degree of relatedness with high confidence.

We performed simulations of simple pedigrees to compare distri-

butions of genetic distance between individuals of different coeffi-

cients of relationship r with those directly observed from aligned

sequences. In these simulations, sequencing error and present-day

contamination were ignored because our previous simulations

showed them to have only minor effects under realistic values of

these parameters. Relatedness among the four Esperstedt individuals

could often not be resolved beyond the level of unrelated or

third-order relatives (e.g., first cousins), which was expected from our

preliminary study given the number of SNPs available (Figure 5). A

relationship with r = .50 between ESP2 and ESP29 was confirmed,

and the assignment was highly significant with OR > 109. Self-com-

parison of individual ESP2 placed this individual outside the distribu-

tion of mean genetic distances for r = 1.00, possibly indicating

extreme recent inbreeding in this individual’s ancestry. To investigate

this possibility, we added an inbred individual (the offspring of siblings)

to the pedigree (Fig. S10). The self-comparison of individual ESP3 was

assigned to this inbred self-relationship distribution with a highly sig-

nificant OR > 1014 over the outbred distribution for r = 1.00.

3.8 | Applications to SNP capture in genomes from
archaeological samples: Case 2

Next, we assessed relatedness in ancient remains from the Els Trocs

cave site in Spain. These samples had direct dates ranging from

5,311 to 5,066 BCE and consisted of five individuals. Haak et al.

(2015) noted one pair (Troc3/Troc4) to be “close relatives.” Mean

sequence depth of target SNP sites was quite low for some

TABLE 1 Provenance of Haak et al. (2015) archaeological samples utilized in this study

Individual
ID

Alternate
ID

Sampling
location

Estimated nuclear genome
contam. rate (%)

Date
(cal BCE) Sex

Mean seq. depth at targeted
autosomal SNP sites (X)

mtDNA
haplotype Y haplotype

Troc1 I0409 ETS 0.0 5311–5218 F 0.80 J1c3

Troc3 I0410 ETS 0.8 5178–5066 M 3.47 pre-T2c1d2 R1b1

Troc4 I0411 ETS 0.4 5177–5068 F 0.12 K1a2a F*

Troc5 I0412 ETS 0.6 5310–5206 M 30.82 N1a1a1 12a1b1

Troc7 I0413 ETS 0.0 5303–5204 F 3.49 V

ESP2 I0114 EG 0.3 2131–1979 M 1.14 I3a I2a2

ESP3 I0115 EG 2.8 1931–1780 F 0.55 U5a1

ESP4 I0116 EG 3.5 2118–1961 M 4.15 W3a1 I2c2

ESP29 I0117 EG 2.6 2199–2064 F 2.32 I3a

ETS, Els Trocs, Spain; EG, Esperstedt, Germany.
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individuals and ranged from 0.19 to 30.89. These samples also had

very low estimated nuclear genome contamination rates in the range

0.0–0.8%. Although genetic distances between most individual pairs

were close to the theoretical value of 2MS for unrelated individuals

(Fig. S11), the number of overlapping sites achieving a minimum

depth of two sequences was quite low, for many pairs at around

1,000 sites. Indeed, the Troc1/Troc4 pair had only 420 overlapping

sites. To maximize the number of available sites, we elected to

examine pairwise genetic distance at sites with a minimum depth of

one sequence, although this precluded all within-individual compar-

isons. This increased the number of overlapping sites to a mean

number of 28,042, and mean values of pairwise genetic distances

between most sample pairs were increased (Fig. S11).

Our initial simulations showed poor agreement with the

observed genetic distances due to a strong bias towards higher val-

ues, resulting in all individuals being at least as related as first cou-

sins (Fig. S12). We calculated the mean error between the mean

simulated genetic distance of unrelated individuals and the observed

genetic distances of putatively unrelated individuals with approxi-

mately the same value for genetic distance. As we saw increased

error in pairwise comparisons with less overlapping sequence, we

calculated the mean error weighted by the number of overlapping

sites assessed in each pairwise comparison. The mean weighted

error was 7.04%. This discrepancy is likely due to ascertainment bias

in our SNP panel, which almost certainly includes sites harbouring

variants that were maintained at frequencies different in the ancient

Els Trocs population than in present-day EUR populations. Because

of this ascertainment bias, the simulations relied on a SNP panel

with a higher rate of heterozygosity in present-day Europeans than

in the population of interest. In this case, our 7.04% error rate actu-

ally gives us some measure of differentiation between the Els Trocs

population and the EUR super-population at the overlapping sites.

Thus, we conducted additional simulations in which EUR allele

frequencies were reduced to 0% at a randomly chosen subsample of

7.04% of target SNP positions and found these simulations agreed

better with the observed genetic distances (Fig. S13). These simula-

tions facilitated confident assignment of the observed pairwise

genetic distances to the r = .00 distribution in most relationships.

Troc4 had the lowest mean sequence depth (0.129) of the samples

considered in this study, and as a result, separability of r = .00 and

r = .125 distributions was often low for this individual. However, the

Troc3/Troc4 comparison was assigned to the r = .50 distribution

with high confidence (OR > 106), and Troc3/Troc7 was assigned to

the r = .125 distribution with high confidence (OR > 106). For

Troc4/Troc7, r = .125 is most likely, although neither the ORs for

r = .125 versus r = .00 nor r = .25 was significant at the level of

102.

The coefficients of relationship assigned within this particular

subset of Els Trocs samples make it possible to narrow down the

possible pedigrees to those compatible with the available data. Troc3

was a male, Troc4 and Troc7 were females, and the three carried

different mitogenome haplotypes (Table 1). Because they do not

share mitogenome haplotypes, one can rule out that Troc4 was the

mother of Troc3. For the same reason, Troc3 and Troc4 could not

have been full-siblings. Although r = .125 (a first-cousins relation-

ship) is most likely for Troc3/Troc7 and Troc4/Troc7, these relation-

ships are not compatible given that Troc3 and Troc4 were not

siblings. If Troc3 was the father of Troc4, then a first-cousins rela-

tionship between Troc3 and Troc7 would have made Troc7 and

Troc4 more distantly related, but not entirely unrelated, which is

consistent with the entirety of the data (Fig. S14).

4 | DISCUSSION

We set out to determine the feasibility of using pairwise genetic dis-

tance to characterize genetic relatedness from low-depth next-

generation genome sequences. We have shown that while in some

cases relatedness can be determined in the absence of population

allele frequencies, estimates of allele frequencies allow for more pre-

cise determination of relatedness. For ancient human populations,

however, estimated allele frequencies are not generally available.

4.1 | Implications for relatedness studies in ancient
samples

We find that while contamination from present-day sources reduces

the power to discriminate relatedness among individuals sampled,

sequencing error does not. However, sequencing error due to
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F IGURE 4 Pairwise genetic distances observed between ancient
human individuals from Esperstedt, Germany, dated to 2,199–
1,780 cal BCE. A mean of 19,586 target genomic positions with
overlapping sequence data in both individuals were examined in
pairwise comparisons. Whiskers indicate � 2 SD (standard deviation)
around the mean of 20 replicates of pairwise genetic distance
generated by randomly sampling from available sequences. Positions
were included in pairwise comparisons only if they had a minimum
sequence depth of 2 in both individuals. Sequences were excluded if
they did not support known transversion alleles. MS indicates the
mean of self-comparisons of the three putatively outbred individuals
ESP2, ESP29 and ESP4
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deamination (DNA damage, as in aDNA data sets) would be

expected to increase the similarity of heavily damaged samples,

albeit in a way that could be parameterized (e.g., J�onsson et al.,

2013). We have also shown our method is able to estimate related-

ness even for inbred individuals, as long as sequences from at least

one known outbred individual is available to determine the ancient

population’s “true” within-individual genetic distance.

Our simulations demonstrate the importance of a wisely cho-

sen SNP panel. A study that uses SNP loci with a higher fre-

quency in a given test population would have more power to

discriminate coefficients of relationship. This is seen in our analy-

sis of sequences from Haak et al. (2015). Even with relatively low

sequencing depth, this panel of only 300k SNPs was sufficient to

determine most coefficients of relationship in two sets of samples.

Although the SNP panel was compatible with the ca. 4,000-year-

old (Middle Neolithic) individuals from Esperstedt, Germany, ascer-

tainment bias was apparent in our application of this panel to the

ca. 7,200-year-old (Early Neolithic) samples from Els Trocs, Spain.

Multiple major genetic turnovers occurred throughout Europe’s

Neolithic period (8,000–7,000ya), which helps to explain the differ-

ent magnitudes of divergence of Els Trocs and Esperstedt allele

frequencies from the present-day populations used for simulation

(Haak et al., 2015).

Our pedigree simulations used present-day EUR genomes with

down-sampled heterozygosity to reconcile the observations of

genetic distance among the Els Trocs individuals with corresponding

simulations. But in this, there is an inherent assumption that certain

individuals are unrelated. An equally promising alternative approach

would be to calculate the average error (as the distance from the

mean observed value to the mean of the simulated distribution)

across all self-comparisons, but this would require limiting the analy-

sis to sites with minimum depth of two sequences. As it requires

only the assumption that no individuals are inbred, this approach is

preferable in most cases. However, when few sequences are avail-

able, as was the case for some Els Trocs individuals, an analysis of

this type may not be possible without excluding certain individuals.

Otherwise, increasing the number of sequenced individuals from

ancient populations would help to identify individuals with unusual
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F IGURE 5 Results of pedigree simulations corresponding to pairwise comparison of aligned sequence data from ancient human individuals
excavated from an archaeological site in Esperstedt, Germany. The horizontal black lines indicate the mean (�SD) of 100 replicate observations
of genetic distance generated by randomly sampling from available aligned sequences. Simulations were initialized with random, unrelated EUR
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minimum depth of 2 in aligned sequences in both individuals, sequencing error = 0%, contamination rate = 0%. GP–GC, grandparent–
grandchild relationship. OR, odds ratio against second-most likely coefficient of relationship. (a) r = .00 or r = .125, OR > 104. (b) r = .00 or
r = .125, OR > 103. (c) r = .50, OR > 109. (d) r = .00 or r = .125, OR > 106. (e) r = .00, OR > 102. (f) r = .00 or .125, OR > 104. (g) r = 1.00,
OR > 1035. (h) r = 1.00, OR > 1036. (i) r = 1.00, OR > 1036. (j) Self-related (inbred offspring of siblings), OR > 1014.
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pairwise genetic distances. Until then, comparisons with the remains

of individuals from sites nearby in time or space are advised. These

additional individuals could be assumed to be from the same popula-

tion, but not the same family.

4.2 | Potential applications

Happily, even under the condition of considerable sequencing error

and high contamination, pairwise sequence differences are powerful

enough to discriminate identical or unrelated biological samples

within low-coverage genome sequences with a sufficient number of

SNPs. This assumes the three major parameters of our model are rel-

atively well characterized. The contamination rate can be estimated

from haploid (mitochondrial and Y chromosome) sequences using

simple approaches such as rates of heterozygosity and mismatch to

the consensus sequence, but more complex, likelihood-based estima-

tors are often applied to the nuclear genome (Meyer et al., 2012).

Estimation of sequencing error is more nuanced, although a profile

of new Illumina platforms’ sequencing error has been characterized

with a mean value of 0.18–0.30%, suggesting a relatively narrow

range within these values for sequences from present-day genomes

(Ross et al., 2013). For aDNA data, damage models such as

MapDamage (J�onsson et al., 2013) can be used to either characterize

the error rate contributed by DNA damage, or—as in our approach

—simply to correct it before sequence analysis.

In our work with SNPs identified in capture sequences from

ancient humans, we found that determination of self-relatedness

was possible even with low sequence coverage. This opens the

possibility of high-throughput screening of mixed archaeological

samples such as bone fragments to cobble together those frag-

ments belonging to the same individual or to determine the mini-

mum number of individuals represented. Our approach would be

especially useful for sorting specimens heavily contaminated with

genetic material from archaeological excavators, museum personnel

or other handlers.

This work also has implications for population genetic studies of

archaeological human populations, as these studies should ideally

take into account individual relatedness when calculating population

genetic statistics. By identifying the degree of relatedness in ancient

individuals already published and analysed in a population genomic

context, we have demonstrated that this is a possible outcome for

future population genomic studies. This point is even more relevant

in the light of our observations of inbreeding within these ancient

populations. Following on the recent report of multiple Neanderthal

exomes obtained through targeted sequence capture (Castellano

et al., 2014), we suggest that our method could be applied to low-

coverage sequences from remains of Neanderthal individuals with a

close association in both time and space. Relatedness determination

within samples such as these, which could represent families or clan

groups, would extend the potential for fascinating insights into

ancient social and family structures of our closest relatives.

Lastly, our framework may one be useful in forensic genomic

scenarios—as in the aftermath of a disaster (Brenner & Weir, 2003)

—where genomic sequences from degraded and/or mixed samples

from the same site could be quickly screened to determine whether

they are genetically identical, or to test for relatedness to potential

family members from whom corresponding genomic sequence data

have been obtained.

4.3 | Future directions

Agreement of our simulations with observed genetic distances

depends on the degree of differentiation between the observed pop-

ulation and the population(s) used for simulations, which complicates

comparison of pedigree simulations to populations with unknown

allele frequency spectra. Thus, future work to simulate genetic dis-

tances within an unknown (ancient) population should attempt to

estimate its allele frequency spectrum so that appropriate sites can

be targeted.

As it assesses genetic distance only where sequences overlap a

panel of sites known to harbour variants at high frequency in the

population of interest, our method does not use sequences of these

targets that may still be informative about pairwise relatedness.

Assessment of pairwise genetic distance at all sites with overlapping

sequences would be a desirable alternative, as this would not rely on

assumed allele frequencies and would use all available genetic infor-

mation, which is scarce in low-depth sequencing studies. These

genetic distances could then be simulated using estimates of con-

tamination, sequencing error and heterozygosity. But at ~0.1%, the

Illumina sequencing error rate, which varies between samples and

sequencing runs, is comparable to the per-base heterozygosity of

the human genome (Nakamura et al. 2011; Schirmer et al. 2015).

Thus, if all overlapping sites are assessed in pairwise comparisons,

sequencing errors threaten to eclipse true genetic differences

between individuals. For our purposes, the use of all genomic posi-

tions where there are overlapping sequence data would be possible

if an accurate model of sequencing error was used to parameterize

the sequencing error rate.

Other recent work (Korneliussen & Moltke 2015; Lipatov, Komal,

Patro, & Veeramah, 2015) also estimates relatedness from low-cov-

erage sequences, building on methods implemented in PLINK (Purcell

et al., 2007) and related software, but with the inclusion of genotype

likelihoods based on per-base sequencing error probabilities. The

simulation results are promising in that these methods, which rely on

allele frequencies estimated in a known population, enable more

accurate determination of relatedness than previous methods that

utilize called genotypes. For Lipatov et al. (2015), this was true even

with population divergence up to FST = 0.1 from assumed allele fre-

quencies. However, the use of genotype likelihoods limits these

types of analysis to individuals sequenced to mean depth ≥29, and

Lipatov et al. (2015) report that their method performs poorly with

admixed and inbred individuals. Methods of this kind, though, do

have added benefits in that they are able to distinguish parent–off-

spring and sibling–

sibling relationships, which typically cannot be achieved using only

genetic distance. Thus, while our method accounts for sample

MARTIN ET AL. | 11



contamination and is applicable to any overlapping sequencing data

regardless of depth, the method of Lipatov et al. (2015) would likely

be superior for relatedness studies with negligible present-day

human contamination and in which the study population’s allele fre-

quencies are not strongly divergent from reference populations.
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