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Abstract
Large-scale	genomic	studies	of	wild	animal	populations	are	often	limited	by	access	to	
high-quality	DNA.	Although	noninvasive	samples,	such	as	faeces,	can	be	readily	col-
lected,	DNA	 from	 the	 sample	producers	 is	usually	present	 in	 low	quantities,	 frag-
mented,	 and	 contaminated	 by	 microorganism	 and	 dietary	 DNAs.	 Hybridization	
capture	can	help	 to	overcome	 these	 impediments	by	 increasing	 the	proportion	of	
subject	DNA	prior	 to	high-throughput	sequencing.	Here	we	evaluate	a	key	design	
variable	 for	 hybridization	 capture,	 the	 number	 of	 rounds	 of	 capture,	 by	 testing	
whether	one	or	two	rounds	are	most	appropriate,	given	varying	sample	quality	(as	
measured	by	the	ratios	of	subject	to	total	DNA).	We	used	a	set	of	1,780	quality-as-
sessed	wild	chimpanzee	(Pan troglodytes schweinfurthii)	faecal	samples	and	chose	110	
samples	of	varying	quality	for	exome	capture	and	sequencing.	We	used	multiple	re-
gression	to	assess	the	effects	of	the	ratio	of	subject	to	total	DNA	(sample	quality),	
rounds	of	capture	and	sequencing	effort	on	the	number	of	unique	exome	reads	se-
quenced.	We	not	only	show	that	one	round	of	capture	is	preferable	when	the	propor-
tion	of	subject	DNA	in	a	sample	is	above	~2%–3%,	but	also	explore	various	types	of	
bias	introduced	by	capture,	and	develop	a	model	that	predicts	the	sequencing	effort	
necessary	for	a	desired	data	yield	from	samples	of	a	given	quality.	Thus,	our	results	
provide	a	useful	guide	and	pave	a	methodological	way	forward	for	researchers	wish-
ing	to	plan	similar	hybridization	capture	studies.
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1  | INTRODUC TION

The	 dynamics	 of	wild	 animal	 populations	may	 be	 effectively	 re-
vealed	 through	 genetic	 analyses.	 Microsatellites	 have	 been	 the	
backbone	 of	 such	 population	 genetic	 studies	 since	 the	 early	
1990s,	 enabling	 study	 of	 parentage	 assignment,	 individual	 dis-
crimination,	 abundance	 estimation	 and	 demographic	 inferences,	
among	 other	 topics	 (Ashley	 &	 Dow,	 1994;	 Morin	 et	al.,	 1994;	
Paetkau	 &	 Strobeck,	 1994).	 However,	 by	 today's	 standards,	 mi-
crosatellites	 represent	 a	 very	 small	 amount	 of	 genetic	 data	 and	
provide	 relatively	 modest	 power,	 making	 questions	 such	 as	 the	
reliable	assessment	of	familial	kin	relationships	or	genetic	signals	
of	 local	 adaptation	 inaccessible	 (Gienapp	 et	al.,	 2017;	 Städele	 &	
Vigilant,	 2016).	 The	 availability	 and	 use	 of	 high-throughput	 se-
quencing	technology	has	exploded	over	the	last	two	decades	and	
has	been	applied	to	various	wild	animal	populations,	such	as	in	the	
study	of	admixture	in	baboons	(Wall	et	al.,	2016),	genomic	signals	
of	 adaptation	 in	 finless	 dolphins	 (Zhou	 et	al.,	 2018)	 and	 recom-
bination	rate	variation	in	wild	red	deer	(Johnston,	Huisman,	Ellis,	
&	Pemberton,	2017).	However,	the	trapping	or	darting	of	animals	
necessary	 for	 obtaining	 high-quality	 DNA	 samples	 is	 often	 im-
practical	 for	ethical	and	 logistical	 reasons.	Although	noninvasive	
samples	 such	 as	 faeces	 can	 typically	 be	 readily	 collected,	DNAs	
isolated	from	such	samples	are	often	fragmented,	present	 in	 low	
quantities,	and	contaminated	by	microorganism	and	dietary	DNA,	
rendering	standard	high-throughput	sequencing	from	more	than	a	
few	individuals	cost-prohibitive.

To	reduce	sequencing	costs	and	improve	data	quality,	researchers	
have	begun	to	use	hybridization	capture	(also	termed	enrichment)	to	
increase	the	proportion	of	subject	DNA	in	sequencing	libraries	pre-
pared	from	noninvasive	samples	(Hernandez-Rodriguez	et	al.,	2018;	
Perry,	Marioni,	Melsted,	&	Gilad,	2010;	Snyder-Mackler	et	al.,	2016;	
van	der	Valk,	Durazo,	Dalén,	&	Guschanski,	2017).	These	methods	
involve	first	hybridizing	target	DNA	to	DNA	or	RNA	baits,	then	im-
mobilizing	 the	 target/bait	 complex,	 and	 washing	 away	 nontarget	
DNA	fragments	before	sequencing.	Optimization	experiments	have	
shown	 that	 bait	 characteristics,	 sample	 characteristics	 and	 exper-
imental	 conditions	all	 impact	capture	efficiency	 (Ávila-Arcos	et	al.,	
2015;	Bragg,	Potter,	Bi,	&	Moritz,	2016;	Carpenter	et	al.,	2013;	Cruz-
Dávalos	 et	al.,	 2017;	 Enk	 et	al.,	 2014;	 Hernandez-Rodriguez	 et	al.,	
2018;	Mason,	Li,	Helgen,	&	Murphy,	2011;	Paijmans,	Fickel,	Courtiol,	
Hofreiter,	&	Förster,	2016;	Portik,	Smith,	&	Bi,	2016;	Schott	et	al.,	
2017).

Despite	such	efforts	 towards	 the	optimization	of	hybridization	
capture,	several	factors	hamper	the	cost-effective	use	of	the	large	
number	 of	 noninvasive	 samples	 needed	 for	 population-level	 stud-
ies.	For	example,	although	conducting	successive	rounds	of	capture	
can	increase	the	proportion	of	nontarget	DNA	that	is	removed	(thus	
increasing	 library	“specificity”),	each	round	of	capture	necessitates	
more	cycles	of	PCR,	thereby	increasing	the	proportion	of	duplicate	
(i.e.,	 redundant)	 reads	 in	 the	 library	 (thus	decreasing	 library	 “com-
plexity”).	 The	 impact	 of	 low	 library	 complexity	 may	 only	 become	
apparent	as	sequencing	effort	increases,	because	as	more	and	more	

sequences	are	produced	from	a	given	library,	the	probability	of	a	new	
read	representing	a	PCR	duplicate	theoretically	increases	until	every	
new	 read	 represents	 redundant	 information.	At	 this	 point,	 a	DNA	
library	made	from	the	sample	 is	effectively	saturated,	and	no	new	
information	can	be	derived	from	increased	sequencing.	Libraries	of	
lower	complexity	reach	saturation	earlier	and	require	more	sequenc-
ing	effort	to	reach	similar	data	yields	compared	to	libraries	of	equal	
specificity,	but	greater	complexity.

This	trade-off	between	library	specificity	and	complexity	 leads	
to	different	recommendations	for	samples	of	high	and	low	quality.	
For	samples	of	higher	quality,	one	round	of	capture	may	suffice	to	
provide	adequate	 library	specificity,	but	for	 lower	quality	samples,	
two	 rounds	 of	 capture	 are	 generally	 recommended,	 despite	 the	
resulting	decrease	in	library	complexity.	However,	because	hybrid-
ization	 studies	 have	 generally	 focused	 either	 on	 very	 high-quality	
(e.g.,	 tissue;	 Bragg	 et	al.,	 2016)	 or	 low-quality	 (e.g.,	 ancient	 DNA;	
Carpenter	et	al.,	2013)	samples,	it	is	unclear	at	what	level	of	sample	
quality	 (i.e.,	proportion	of	subject	DNA	 in	an	extract)	 two	capture	
rounds	provides	greater	sequencing	efficiency	than	one.	This	is	es-
pecially	 important	 for	 studies	of	noninvasive	 samples,	which	 typi-
cally	exhibit	high	variation	in	quality	(Taberlet	&	Luikart,	1999).	Note	
that	throughout	this	paper	we	refer	to	sample	DNA	“quality”	as	the	
proportion	of	subject	DNA	to	total	DNA,	a	readily	assessed	measure.	
Other	aspects	of	sample	quality,	such	as	fragmentation	and	damage-
induced	misincorporations,	are	less	quantifiable	prior	to	sequencing	
and	are	not	addressed	here.

We	 use	 a	 large	 set	 of	 noninvasive	 samples	 from	 wild	 eastern	
chimpanzees	 (Pan troglodytes schweinfurthii)	 to	 explicitly	 examine	
how	the	proportion	of	subject	DNA	in	the	extracts	and	the	number	
of	rounds	of	capture	interact	to	influence	the	efficiency	of	hybrid-
ization	capture	and	high-throughput	sequencing	(as	measured	by	the	
ratio	of	unique	on-target	reads	to	total	reads	sequenced).	We	cap-
tured	chimpanzee	exome	DNA	in	one	or	two	rounds	and	used	multi-
ple	regression	analysis	to	determine	the	threshold	of	sample	quality	
at	which	 two	 rounds	 of	 capture	 confers	 a	 greater	 ratio	 of	 unique	
reads	mapping	to	the	exome	to	total	reads	sequenced.

Because	 the	 standard	method	 of	 pooling	 samples	 for	 capture	
according	 to	molarity	may	 lead	 to	 sequencing	bias	across	 samples	
within	 a	 pool	 (Hernandez-Rodriguez	 et	al.,	 2018),	 we	 conducted	
shotgun	sequencing	to	re-estimate	the	proportion	of	subject	DNA	in	
each	sequencing	library.	This	enables	us	to	compare	two	measures	
(qPCR/Fragment	Analyzer	vs.	shotgun)	of	percentage	subject	DNA	
in	each	library,	and	to	construct	pools	of	samples	with	similar	propor-
tions	of	subject	DNA	prior	to	capture,	a	practice	recommended	by	
Hernandez-Rodriguez	et	al.	(2018)	to	minimize	sequencing	bias.	We	
also	explored	within-sample	bias	introduced	by	successive	rounds	of	
capture	by	examining	evenness	of	capture	across	the	target	space	
and	three	possible	drivers	of	bias:	GC	content,	fragment	length,	and	
divergence	between	the	bait-design	species	(human)	and	the	target	
species	(chimpanzee).

By	 incorporating	 sequencing	 effort	 in	 our	 multiple	 regression	
model,	we	are	able	to	show	how	the	expected	data	yield	 (i.e.,	 the	
number	of	uniquely	mapped	reads)	varies	with	sample	quality	and	
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sequencing	 effort,	 or	 alternatively,	 the	 extent	 of	 sequencing	 re-
quired	to	reach	a	desired	data	yield	for	samples	of	a	given	quality,	
thus	providing	a	useful	guide	to	the	feasibility	of	hybridization	cap-
ture.	Finally,	to	further	facilitate	future	research	we	present	detailed	
protocols	 and	 budget	 summaries.	 Our	 results	 provide	 a	 method-
ological	 way	 forward	 for	 large-scale	 hybridization	 capture-based	
studies	of	noninvasive	samples,	and	highlight	the	importance	of	ex-
plicit	consideration	of	sample	availability	and	quality	when	project	
planning.

2  | METHODS

For	easy	reference,	a	simple	schematic	detailing	the	various	steps	of	
our	protocol	is	provided	in	Supporting	Information	Figure	S1.

2.1 | Sample collection and screening

Chimpanzee	faecal	samples	were	collected	opportunistically	during	
routine	surveys	for	the	removal	of	 illegal	snares	at	Kibale	National	
Park,	Uganda,	from	2011	to	2016	and	were	stored	using	a	two-step	
ethanol–silica	preservation	method	(Nsubuga	et	al.,	2004).	As	part	of	
an	on-going	population	size	monitoring	project,	DNA	was	extracted	
from	these	faecal	samples	using	either	the	GeneMATRIX	Stool	DNA	
Purification	Kit	(Roboklon)	according	to	the	manufacturer's	instruc-
tions	 or	 QIAmp	 Stool	 kit	 (Qiagen)	 with	 slight	 modifications	 from	
the	 manufacturer's	 protocol	 (Nsubuga	 et	al.,	 2004).	 Microsatellite	
genotyping	was	performed	to	establish	sex	and	 individual	 identity	
as	previously	described	(Arandjelovic	et	al.,	2009;	Granjon,	Rowney,	
Vigilant,	&	Langergraber,	2017).	We	considered	only	extracts	 that	
were	 successfully	 genotyped	 at	 enough	 loci	 to	 confidently	 assign	
an	 ID	 (for	 details	 see	Granjon	 et	al.,	 2017)	 for	 exome	 sequencing.	
Additionally,	two	tissue	samples	were	collected	from	two	deceased	
chimpanzees	found	within	Kibale.	These	samples	were	collected	in	
RNAlater	(Ambion),	extracted	using	the	DNeasy	Blood	and	Tissue	kit	
(Qiagen)	and	also	microsatellite	genotyped.

Because	the	DNA	present	in	each	faecal	extract	is	expected	to	
derive	from	bacterial,	fungal	and	dietary	sources	as	well	as	the	chim-
panzee	 itself,	we	estimated	the	concentration	of	amplifiable	chim-
panzee	DNA	in	each	extract	using	a	qPCR	assay	designed	by	Morin,	
Chambers,	 Boesch,	 and	 Vigilant	 (2001)	 with	 some	 modifications.	
Reactions	were	performed	in	triplicate	using	1	μl	of	extract	or	DNA	
standard,	 1×	 Maxima	 SYBR	 Green	 Mastermix	 (Thermo	 Scientific)	
and	0.3	μM	forward	and	reverse	primer.	All	qPCRs	included	no-tem-
plate	controls	and	were	performed	on	a	Bio-Rad	CFX96	instrument	
with	the	following	cycling	conditions:	95°C	for	15	min,	followed	by	
40	 cycles	 of	 94°C	 for	 30	s,	 59°C	 for	 30	s	 and	 72°C	 for	 30	s	with	
a	 plate	 read	 after	 every	 cycle.	We	 then	measured	 the	 total	 DNA	
content	of	each	extract	using	the	Fragment	Analyzer	System	(Large	
Fragment	 Standard	 Sensitivity	 Kit;	 Advanced	 Analytical).	 We	 de-
fine	 the	estimated	 fraction	of	 subject	DNA	 in	each	extract	 as	 the	
estimated	chimpanzee	DNA	concentration	divided	by	the	total	DNA	
concentration.

2.2 | Library preparation

Along	with	the	two	tissue	extracts	which	serve	as	high-quality	DNA	
controls,	we	chose	110	faecal	extracts,	each	representing	a	unique	
individual,	for	exome	sequencing	based	on	their	estimated	percent-
age	of	 subject	DNA	 relative	 to	 total	DNA	concentration.	Because	
studies	of	ancient	DNA	found	that	hybridization	capture	of	samples	
with	<1%	subject	DNA	yielded	only	small	amounts	of	useable	data	
(Ávila-Arcos	 et	al.,	 2015;	 Cruz-Dávalos	 et	al.,	 2018),	 we	 conserva-
tively	chose	extracts	with	more	than	2%	subject	DNA.	In	addition,	
we	 only	 used	 samples	with	 total	DNA	 concentrations	 >6	ng/μl	 so	
that	we	could	remove	200	ng	for	library	preparation	without	need-
ing	to	concentrate	the	extract.

Recent	published	works,	and	our	own	Fragment	Analyzer	results	
(chromatograms,	data	not	 shown),	 show	 that	 fragment	 length	distri-
butions	of	 faecal	 sample	 extracts	 are	 extremely	 varied,	 both	 across	
and	within	samples,	and	that	such	samples	require	shearing	to	acquire	
shorter	 and	 more	 normally	 distributed	 fragment	 lengths	 for	 library	
preparation	 (Hernandez-Rodriguez	 et	al.,	 2018;	 van	 der	 Valk	 et	al.,	
2017).	Hernandez-Rodriguez	et	al.	(2018)	found	that	shorter	fragments	
already	 below	 the	 target	 size	were	 not	 further	 fragmented	 through	
sonication	(which	may	have	led	to	a	loss	of	useable	data),	probably	be-
cause	of	the	exponentially	higher	amount	of	energy	required	to	shear	
shorter	fragments.	Thus,	our	selected	extract	DNAs	were	sheared	to	
200-bp	fragments	using	the	Covaris	S2	ultrasonicator	(Covaris)	under	
the	 following	 settings:	 intensity	5,	 duty	 cycle	10%,	 cycles	 per	 burst	
200,	treatment	time	120	s,	temperature	7°C	and	water	level	14.

We	converted	200	ng	of	sheared	extract	 into	Illumina	sequenc-
ing	 libraries	 using	 the	 “BEST”	 method	 described	 by	 Carøe	 et	al.	
(2018),	with	some	modifications	described	in	detail	in	the	Supporting	
Information.	 After	 library	 preparation,	 two	 PCRs	 were	 performed	
in	parallel	using	the	purified	nick-repaired	products.	One	PCR,	con-
ducted	to	prepare	the	libraries	for	shotgun	sequencing,	used	adapter-
targeted	primers	with	a	5′	tail	incorporating	the	full	indexing	adapter	
(P5/P7	 Indexing	 Primers,	 Supporting	 Information	 Table	 S1).	 The	
other	PCR,	done	 to	prepare	 the	 libraries	 for	hybridization	 capture,	
used	adapter-targeted	primers	without	the	extended	sequence	(i.e.,	
without	the	index	and	the	remainder	of	the	Illumina	adapter,	P5/P7	
PreHyb	Primers,	Supporting	 Information	Table	S1).	PCRs	were	per-
formed	in	50-μl	volumes	using	5	μl	of	template,	1×	Phusion	Mastermix	
(Thermo	Scientific)	and	0.5	μM	forward	and	reverse	primer	under	the	
following	conditions:	98°C	for	30	s,	followed	by	8–10	cycles	(depend-
ing	on	qPCR	results,	Supporting	Information)	of	98°C	for	10	s,	60°C	
for	30	s	and	72°C	for	30	s,	followed	by	72°C	for	5	min.

Libraries	prepared	for	shotgun	sequencing	were	pooled	in	equi-
molar	concentrations,	and	2	μl	of	each	library	blank	was	added	to	the	
pool.	The	pool	was	then	sequenced	on	one	lane	of	an	Illumina	HiSeq	
2500	(125-bp	read	lengths,	paired-end).

2.3 | Hybridization capture

Our	 experimental	 design	 was	 constructed	 to	 assess	 the	 suitabil-
ity	 of	 one	 versus	 two	 rounds	 of	 capture	 for	 libraries	 with	 varied	
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subject	 DNA	 content.	 A	 recent	 study	 on	 noninvasive	 sample	 hy-
bridization	capture	found	a	high	correlation	between	subject	DNA	
content	and	total	number	of	reads	sequenced	across	pooled	librar-
ies	(Hernandez-Rodriguez	et	al.,	2018).	The	authors	suggest	an	ap-
proach	 to	 reduce	 sequencing	bias	 in	which	all	 samples	are	pooled	
in	equitable	ratios	with	respect	to	subject	DNA	prior	to	capture	(in	
contrast	to	the	standard	equimolar	ratios).	As	such,	it	is	important	to	
accurately	estimate	the	percentage	of	subject	DNA	for	each	library.	
Therefore,	following	data	processing	and	read	mapping	(see	below),	
we	used	the	shotgun	sequencing	data	to	re-estimate	the	percentage	
subject	DNA	(as	the	number	of	unique	mapped	reads	divided	by	total	
reads	sequenced)	prior	to	hybridization	capture.

We	then	calculated	the	subject	DNA	molarity	of	each	library	by	
multiplying	total	molarity	by	percentage	subject	DNA	as	estimated	
from	shotgun	sequencing.	This	value	was	used	to	pool	faecal	sample	
libraries	equitably	 into	11	groups	of	10	 libraries	 (Table	1).	The	two	
tissue	sample	 libraries	were	pooled	separately,	 captured	once	and	
used	as	positive	 controls.	 Five	 faecal	 sample	pools	were	 captured	
once;	the	remaining	six	were	captured	in	two	rounds.

Many	capture	experiments	sequence	the	same	library	after	each	
round	of	capture	to	have	a	matched	comparison	of	one	versus	two	
rounds	(Hernandez-Rodriguez	et	al.,	2018;	van	der	Valk	et	al.,	2017).	
We	chose	to	eschew	such	a	design	for	two	reasons.	First,	our	large	
sample	size	allows	meaningful	analysis	without	matched	sampling.	
Second,	 removing	 a	 portion	 of	 the	 library	 after	 the	 first	 round	 of	
capture	will	 reduce	the	total	amount	of	DNA	(already	significantly	
reduced	during	the	first	round	of	capture)	available	for	the	second	
round	of	capture,	potentially	biasing	the	results.

We	chose	SureSelect	XT	Human	All	Exon	version	6	RNA	Library	
baits	(target	space	~60	Mb,	Agilent)	for	the	enrichment	of	libraries	
because	human	exome	baits	have	been	used	to	capture	chimpanzee	
exomes	 successfully	 in	 the	 past	 (Jin	 et	al.,	 2012;	Vallender,	 2011).	
We	 followed	 a	 modified	 version	 of	 the	 manufacturer's	 protocol	
using	homemade	buffers	and	custom	xGen	blocking	oligos	 (P5/P7	
Blocking	Oligos,	IDT),	which	use	proprietary	modifications	to	block	

the	 barcode	 sequences	 and	 increase	 the	 melting	 temperature	 of	
blocker–adapter	duplexes.	Our	protocol	 is	provided	in	detail	 in	the	
Supporting	 Information.	 After	 enrichment	 via	 one	 or	 two	 rounds	
of	capture	 (Table	1),	all	 library-pools	were	 then	pooled	at	equimo-
lar	concentrations	and	the	pool	was	sequenced	on	two	lanes	on	the	
Illumina	HiSeq	2500	using	paired-end,	125-bp	read	lengths.

2.4 | Sequence processing

Raw	reads	were	demultiplexed	and	internal	barcodes	were	removed	
using	 sabre	 (https://github.com/najoshi/sabre)	 allowing	 for	 a	 sin-
gle	 mismatch	 (−m	=	1).	 Adapter	 contamination	 was	 trimmed	 using	
bbduk	 (part	 of	 the	 bbtools	 software	 suite:	 http://jgi.doe.gov/data-
and-tools/bbtools/)	 and	 reads	overlapping	by	10	bp	or	more	were	
merged	using	flash	(Magoč	&	Salzberg,	2011).	We	mapped	reads	to	
the	 chimpanzee	 reference	genome	 (panTro4)	using	bbmap	with	de-
fault	settings.	Collapsed	and	paired	reads	were	mapped	separately	
and	the	resultant	bam	files	were	merged	and	sorted	using	samtools 
(Li	et	al.,	2009).	Duplicate	reads	were	identified	and	removed	using	
picardtools	 (http://broadinstitute.github.io/picard/)	and	reads	were	
filtered	by	minimum	 length	 (35	bp)	 and	 a	minimum	mapping	qual-
ity	score	of	30	using	the	reformat	option	of	bbtools.	Target	regions	
(as	 provided	 by	 Agilent)	 were	 translated	 from	 hg19	 coordinates	
to	 panTro4	 using	 the	 liftover	 utility	 from	the	 UCSC	(University	 of	
California	 Santa	 Cruz)	 Genome	 Browser	 with	 default	 parameters	
(Kuhn,	Haussler,	&	Kent,	2013).	Finally,	reads	mapping	to	the	target	
region	were	extracted	using	bedtools  intersectbed	(Quinlan	&	Hall,	
2010).	From	the	 resulting	bam	files	we	extracted	 read	counts	and	
coverage	information	using	a	combination	of	samtools and bedtools.

We	estimated	library	complexity	and	saturation	curves	for	each	
library	individually	using	the	lc_extrap	option	of	preseq	(Daley	&	Smith,	
2013).	preseq	uses	duplication	rate	information	from	shallow	sequenc-
ing	experiments	to	predict	the	gain	 in	unique	reads	from	increased	
sequencing	effort.	However,	preseq	was	not	designed	for	capture	ex-
periments	and	 ignores	off-target	 reads.	We	therefore	modified	 the	

Pool
Number of 
libraries

Percentage subject DNA in 
librariesa  Rounds of capture

1 10 22.7–37.4 1

2 10 17.6–21.9 2

3 10 15.3–17.5 1

4 10 13.4–15.1 2

5 10 10.3–12.5 1

6 10 9.3–10.3 2

7 10 8.2–9.2 1

8 10 6.3–8.0 2

9 10 5.5–6.3 1

10 10 3.8–5.2 2

11 10 1.7–3.0 2

12b  2 79.0–87.0 1

aEstimated	using	shotgun	sequencing.	bPool	12	is	the	tissue	sample	library	pool.

TA B L E  1  Experimental	design	to	
assess	the	outcome	of	one	versus	two	
rounds	of	capture

https://github.com/najoshi/sabre
http://jgi.doe.gov/data-and-tools/bbtools/
http://jgi.doe.gov/data-and-tools/bbtools/
http://broadinstitute.github.io/picard/
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preseq	output	to	correct	the	amount	of	required	sequencing	by	the	
fraction	of	on-target	reads	in	the	libraries.	This	modification	results	in	
varying	“sequenced	reads”	values	for	each	library	analysed.	To	allow	
valid	comparisons	to	be	made	across	 libraries,	we	used	linear	 inter-
polation	to	extract	the	predicted	number	of	unique	reads	for	a	given	
number	 of	 sequenced	 reads	 for	 all	 samples.	 R-code	 for	 the	 preseq 
output	modification	and	linear	 interpolation	are	available	on	github	
(https://github.com/mtrw/white_etal_preseq_hybcap).

2.5 | Analysis of capture rounds

Our	measure	of	capture	efficiency	is	the	number	of	unique	(i.e.,	non-
redundant)	reads	that	map	to	the	target	region	(the	exome)	out	of	the	
total	 number	 of	 reads	 sequenced	 (proportion	 of	 unique,	 on-target	
reads).	We	aimed	to	assess	how	the	proportion	of	unique,	on-target	
reads	is	impacted	by	the	number	of	rounds	of	capture,	in	interaction	
with	the	ratio	of	subject	to	total	DNA	(sample	quality).	However,	the	
proportion	of	unique,	on-target	reads	is	not	static	in	regard	to	sequenc-
ing	effort	because,	as	sequencing	effort	increases,	DNA	libraries	will	
approach	the	saturation	point	at	variable	rates,	depending	on	complex-
ity.	When	saturation	is	reached,	all	unique	reads	have	been	exhausted	
and	all	new	reads	represent	duplicate	(i.e.,	redundant)	information.	We	
therefore	also	 included	 sequencing	effort	 in	our	multiple	 regression	
model	by	measuring	the	number	of	unique	on-target	reads	at	various	
levels	of	sequencing	effort	as	provided	by	the	modified	preseq output.

Specifically,	 after	 excluding	 the	 tissue-sample	 control	 libraries,	
we	had	110	faecal	sample	 libraries	measured	at	eight	 levels	of	se-
quencing	effort	(i.e.,	2,	5,	8,	11,	14,	15,	17	and	20	million	total	reads	
sequenced,	n	=	8	×	110	=	880).	We	evaluated	the	predicted	number	
of	unique	on-target	 reads	 (response	variable)	 for	various	values	of	
total	 reads	sequenced	 (modified	from	the	original	preseq	output	as	
above).	This	allowed	us	to	include	and	standardize	sequencing	effort	
as	a	predictor	in	our	model,	as	well	as	examine	the	probable	impact	
of	 the	 number	 of	 rounds	 of	 capture	 at	 higher	 sequencing	 depths	
than	we	actually	produced.	Our	other	predictors	were	the	number	
of	 rounds	 of	 capture	 (one	 or	 two)	 and	 the	 precapture	 percentage	
of	subject	DNA	in	each	library	(estimated	from	shotgun	sequencing	
results).	We	included	the	three-way	interaction	of	our	predictors	and	
all	lower	terms	this	encompassed.

Prior	to	fitting	the	model	we	examined	the	distribution	of	each	
predictor,	and	log-transformed	the	precapture	percentage	of	subject	
DNA	to	achieve	a	more	symmetrical	distribution.	We	then	z-trans-
formed	the	two	covariate	predictors	to	yield	comparable	estimates	
and	a	more	easily	 interpretable	model	 (Schielzeth,	2010).	To	verify	
the	assumptions	of	normality	and	homogeneously	distributed	resid-
uals	we	visually	inspected	a	qqplot	and	scatterplot	of	the	residuals	
plotted	 against	 fitted	 values.	These	 and	diagnostics	of	model	 sta-
bility	(leverage,	dffits	and	Cook's	distance)	suggested	some	poten-
tially	influential	cases	(Quinn	&	Keough,	2002).	However,	fitting	the	
model	with	these	data	points	excluded	revealed	essentially	identical	
results	as	the	model	based	on	all	data,	and	hence	we	report	the	re-
sults	obtained	 from	 the	complete	data	 set.	To	 test	 for	 collinearity	
we	checked	variance	 inflation	 factors	 (VIFs;	Zuur,	 Ieno,	&	Elphick,	

2010)	of	the	model	excluding	interactions,	which	indicated	that	col-
linearity	was	not	an	issue	(largest	VIF	=	1.13).	We	fit	the	model	in	r 
(version	3.4.2;	R	Core	Team,	2017)	using	the	function	 lm,	and	first	
compared	the	full	model	 to	the	null	model	 (comprising	 just	 the	 in-
tercept)	using	an	F-test,	before	examining	individual	effects	includ-
ing	the	interactions	(Forstmeier	&	Schielzeth,	2011).	R-code	for	our	
model	 implementation	 is	 available	 on	 github	 (https://github.com/
mtrw/white_etal_preseq_hybcap).

2.6 | Exploration of capture bias

We	assessed	bias	introduced	by	successive	rounds	of	capture	by	first	
examining	whether	the	amount	of	drop-out	and/or	highly	sequenced	
targets	 increased	 with	 rounds	 of	 capture.	 We	 extracted	 average	
depth	of	coverage	per	target	region	(from	the	bed	file	provided	by	
Agilent	with	overlapping	and	book-ended	regions	merged),	per	sample	
(n	=	112)	using	the	bedtools coverageBed	option,	excluding	the	X	and	
Y	chromosomes.	Using	multiple	 regression,	we	tested	whether	 the	
average	number	of	drop-out	regions	(depth	=	0)	or	highly	sequenced	
regions	 (depth	>	10)	 was	 significantly	 different	 between	 samples	
captured	in	one	or	two	rounds,	whilst	controlling	for	sequencing	ef-
fort	and	capture	success	by	including	the	number	of	unique	exome	
reads	per	sample.	As	above,	we	fit	the	models	in	r	using	the	function	
lm,	and	ensured	that	assumptions	were	met.	We	again	found	some	
evidence	of	influential	cases,	but,	as	above,	we	found	no	difference	
in	 results	when	 they	were	excluded	and	 thus	present	 the	 full	data	
set.	Full–null	model	comparisons	were	made	using	null	models	which	
included	our	control	predictor,	namely	the	number	of	unique	exome	
reads.	 R-code	 for	 this	 model	 implementation	 is	 also	 available	 on	
github	(https://github.com/mtrw/white_etal_preseq_hybcap).

To	explore	what	may	be	driving	bias	within	 samples	we	deter-
mined	 the	 GC	 content	 (using	 bedtoolsnuc	 applied	 to	 the	 panTro4	
reference)	 and	 the	proportion	of	mismatches	between	 the	human	
(hg19,	with	which	the	bait	sequences	were	designed)	and	chimpan-
zee	(panTro4)	reference	genomes	(using	the	axt	alignment	files	pro-
vided	by	UCSC)	for	each	target	region	(again	excluding	the	X	and	Y	
chromosomes).	We	also	extracted	 the	GC	content	per	 read	 (using	
unix	command	line	tools,	sed and grep),	and	the	length	distribution	
of	mapped	 reads	 (using	 picardtools)	 from	bam	 files	 of	 a	 subset	 of	
samples	(for	computational	efficiency	and	ease	of	visualization,	10	
captured	 in	one	round,	10	captured	 in	 two	rounds;	Pools	1	and	2)	
before	and	after	capture.

2.7 | Data and prediction validation

To	confirm	that	preseq	produced	reliable	projections	with	our	data	
set,	we	further	sequenced	10	enriched	 libraries	 (Pool	1)	using	one	
additional	 lane	 of	 the	 llumina	 HiSeq	 2500	 (125-bp	 read	 lengths,	
paired-end).	After	sequence	processing	as	above,	we	ran	preseq on 
these	data	using	the	c_curve	option,	which	uses	down-sampling	to	
yield	 the	number	of	unique	on-target	 reads	 for	experiments	using	
the	same	or	less	sequencing	effort.	After	correcting	the	amount	of	
required	sequencing	by	the	fraction	of	on-target	reads	as	above,	we	

https://github.com/mtrw/white_etal_preseq_hybcap
https://github.com/mtrw/white_etal_preseq_hybcap
https://github.com/mtrw/white_etal_preseq_hybcap
https://github.com/mtrw/white_etal_preseq_hybcap
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compared	these	results	with	our	predictions	(based	on	shallow	se-
quencing)	of	unique	on-target	reads.

To	further	confirm	the	acquisition	of	biologically	meaningful	in-
formation	using	hybridization	captured	DNA	data,	we	used	the	10	
deeply	 sequenced	 samples	 to	 examine	 chimpanzee	 genetic	 vari-
ation	 in	a	subspecies	context.	We	combined	 the	exome	data	 from	
these	10	samples,	with	high	coverage	 (16–26×)	chimpanzee	whole	
genome	shotgun	data	from	eight	individuals	(Prado-Martinez	et	al.,	
2013)	 and	moderate	 to	 high	 coverage	 (4–49×)	 chimpanzee	 exome	
data	from	six	individuals	(Hernandez-Rodriguez	et	al.,	2018).	These	
additional	data	represent	all	four	chimpanzee	subspecies,	including	
additional	individuals	from	Kibale	National	Park.	We	used	this	com-
bined	 data	 set	 to	 extract	 genotype	 likelihoods	 using	 the	 program	
angsd	(Korneliussen,	Albrechtsen,	&	Nielsen,	2014),	using	the	default	
settings	 of	 the	 GATK	model,	 but	 requiring	 sites	 to	 be	 covered	 in	
all	24	samples.	These	genotype	likelihoods	were	then	used	to	per-
form	principal	components	analysis	(PCA)	using	pcangsd	(Meisner	&	
Albrechtsen,	2018).

3  | RESULTS

3.1 | Sample selection and estimation of subject 
DNA proportion

The	 1,780	 faecal	 extracts	 that	 were	 successfully	 genotyped	 rep-
resent	738	 individuals	 from	across	Kibale	National	Park.	Of	 these	
extracts,	316	(17.8%),	representing	235	individuals,	contain	>2%	sub-
ject	DNA,	and	had	 total	DNA	concentrations	>6	ng/μl	(Supporting	
Information	Figure	S2).	From	this	subset	we	chose	the	110	unique	
individual	extracts,	in	addition	to	the	two	tissue	extracts,	for	exome	
sequencing.

We	 constructed	 libraries	 from	 each	 of	 the	 112	 extracts	 and	
shotgun	 sequenced	 an	 average	 of	 1,223,582	 reads	 per	 library	
(range	=	751,451–2,036,321,	 Supporting	 Information	 Table	 S2)	 to	
examine	how	well	our	qPCR/Fragment	Analyzer	estimate	reflected	
the	 true	 subject	DNA	proportion	of	 our	DNA	 libraries.	We	 found	
only	a	moderate	correlation	between	percentage	subject	DNA	esti-
mated	from	qPCR/Fragment	Analyzer	and	from	shotgun	sequencing	
(Pearson's	 r	=	0.58,	 p	<	0.001,	 Supporting	 Information	 Figure	 S3).	
The	mean	per	cent	of	subject	DNA	in	the	faecal	sample	extracts	as	
estimated	by	shotgun	sequencing	was	11.6%	(range	=	1.7%–37.4%),	
while	 the	 average	 estimated	 using	 qPCR/Fragment	 Analyzer	 was	
7.6%	(range	=	2%–58.6%).	As	we	consider	the	estimate	from	shotgun	
sequencing	 to	be	more	 reliable,	we	used	 these	values	 to	calculate	
volumes	for	pooling	of	libraries	prior	to	capture	and	hereafter	refer	
to	this	estimate.	No	library	blank	control	yielded	any	reads	mapping	
to	 the	 chimpanzee	 genome	 after	 filtering	 (Supporting	 Information	
Table	S2).

3.2 | Capture success

After	performing	one	or	two	rounds	of	capture	on	our	library	pools,	
we	 sequenced	 on	 average	 2,646,199	 reads	 per	 captured	 library	

(range	=	208,215–5,435,336,	Supporting	Information	Table	S2).	The	
variation	in	the	raw	data	acquired	per	library	varied	much	less	than	
was	 reported	 by	Hernandez-Rodriguez	 et	al.	 (2018;	 range	 0.2–5.5	
million	 reads	here	 compared	 to	0.7–45.9).	Unlike	 that	observed	 in	
Hernandez-Rodriguez	 et	al.,	 we	 did	 not	 observe	 a	 correlation	 be-
tween	 number	 of	 raw	 reads	 and	 precapture	 percentage	 subject	
DNA	 (Pearson's	 r	=	−0.03,	p	=	0.69,	 Supporting	 Information	Figure	
S4),	indicating	a	reduction	in	sequencing	bias	due	to	equimolar	pool-
ing	 (as	 suggested	by	Hernandez-Rodriguez	et	al.,	2018)	within	our	
capture	pools.	Below	we	provide	a	description	of	shotgun	sequenc-
ing	and	capture	 results	before	describing	our	model	 results	 in	 the	
next	section.

For	 the	 shotgun-sequenced	 faecal	 DNA	 libraries,	 the	 average	
percentage	of	reads	mapping	to	the	chimpanzee	genome	was	13.7%	
(range	=	1.9%–45.8%,	please	note	 this	differs	 from	our	calculation	
in	the	section	above	as	it	includes	duplicated	and	unfiltered	reads),	
the	average	percentage	of	on-target	reads	(i.e.,	those	mapping	to	the	
chimpanzee	exome)	was	0.4%	(range	=	0.08%–1.4%)	and	the	dupli-
cation	rates	(i.e.,	the	average	number	of	times	a	unique	fragment	was	
sequenced)	 were	 low	 (mean	=	1,	 range	=	1–1.02).	 By	 comparison,	
after	enrichment	 the	average	percentage	of	 reads	mapping	 to	 the	
chimpanzee	 genome	 was	 88.3%	 (one	 round,	 range	=	73.1%–97%)	
and	97.1%	(two	rounds,	 range	=	95%–98.3%),	 the	average	percent-
age	of	on-target	 reads	was	67.1%	 (one	round,	 range	=	57%–74.3%)	
and	85.5%	(two	rounds	range	=	81.4%–87.2%),	and	the	average	du-
plication	 rates	were	 1.16	 (one	 round,	 range	=	1.06–1.35)	 and	 1.61	
(two	 rounds,	 range	=	1.32–2.26).	 The	 mapping	 data	 for	 individual	
samples	can	be	found	in	Supporting	Information	Table	S2.

This	inverse	relationship	of	mapping	and	duplication	rates	in	li-
braries	captured	in	one	or	two	rounds	resulted	in	a	small	difference	
in	the	percentage	of	unique	exome	reads:	55%	(range	=	44.4%–66%)	
for	libraries	captured	in	one	round	and	51.4%	(range	=	33.8%–63.1%)	
for	 libraries	 captured	 in	 two	 rounds.	 Thus,	 enrichment	 of	 exome	
reads	 in	 faecal	 extracts	 ranged	 from	 46-	 to	 538-fold.	 Saturation	
curves	predicted	by	preseq	analysis	showed	that	libraries	with	higher	
precapture	 percentage	 subject	DNA	 (as	 estimated	 by	 shotgun	 se-
quencing)	were	generally	more	complex	(i.e.,	had	a	steeper	satura-
tion	curve)	after	capture	(Supporting	Information	Figure	S5).

For	the	two	tissue	samples,	3%	of	reads	were	on-target	in	shotgun-
sequenced	libraries	and	duplicate	rates	were	again	low	(range	=	1–1.02).	
After	 enrichment	 the	 average	 percentage	 of	 chimpanzee	 genome	
reads,	 average	 percentage	 of	 on-target	 reads,	 duplication	 rates	 and	
percentage	unique	on-target	reads	for	the	two	singly	captured	libraries	
were	98.2%	(SD	=	0.6),	72.3%	(SD	=	2.2%),	1.05	(SD	=	0.00)	and	66.1%	
(SD	=	2.2%),	respectively,	resulting	in	an	average	enrichment	of	24-fold	
(Supporting	 Information	 Table	 S2).	 Saturation	 curves	 for	 these	 two	
tissue	samples	revealed	them	to	be	more	complex	than	all	the	faecal	
samples,	as	expected	(Supporting	Information	Figure	S5).

3.3 | Preferred number of rounds of capture

Overall,	 our	 predictors	 clearly	 influenced	 the	 number	 of	 unique	
on-target	 reads	 estimated	 by	 preseq	 (full-null	 model	 comparison:	
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F7,872	=	413.2,	p	<	0.001).	More	specifically,	one	round	of	capture	led	
to	 a	 greater	number	of	 unique	on-target	 reads	 than	 two	 rounds	of	
capture.	While	this	general	pattern	held	regardless	of	sequencing	ef-
fort	or	 starting	percentage	of	 subject	DNA	 (across	 the	 ranges	cov-
ered	by	our	data),	the	increase	in	unique	on-target	reads	conferred	by	
one	round	of	capture	compared	to	two	was	greater	with	 increasing	
sequencing	effort	and	(log-scaled)	starting	percentage	subject	DNA	
(three-way	interaction,	p	=	0.00019,	Supporting	Information	Table	S3,	
Figure	1).

Our	model	predicts	that,	for	samples	with	lower	precapture	per-
centage	subject	DNA	(<2%–3%),	the	observed	pattern	would	reverse	
and	two	rounds	of	capture	would	lead	to	a	greater	number	of	unique	
on-target	reads	than	one	round	(Supporting	Information	Figure	S6).	
However,	our	comparative	data	do	not	extend	to	these	low	values	of	
precapture	percentage	subject	DNA,	and	therefore	such	predictions	
should	be	taken	with	caution.

3.4 | Capture bias

Rounds	 of	 capture	 influenced	 both	 the	 number	 of	 drop-out	 re-
gions	and	the	number	of	highly	sequenced	regions	(full–null	model	
comparisons:	 drop-out:	 F−1,110	=	77.78,	 p	<	0.001	 and	 highly	 se-
quenced:	 F−1,110	=	193.09,	 p	<	0.001).	 Performing	 two	 rounds	
of	 capture	 increased	 both	 the	 number	 of	 dropout	 regions	 and	
the	 number	 of	 highly	 sequenced	 regions	 (Figure	2,	 Supporting	
Information	Tables	S4	and	S5).	Visual	inspection	of	depth	of	cov-
erage	across	the	target	regions	(Supporting	Information	Figure	S7)	

confirmed	that	the	bias	towards	or	away	from	certain	regions	was	
largely	consistent	across	captured	samples	 from	both	 faecal	and	
tissue	samples,	and	was	not	observed	 in	whole	genome	shotgun	
sequencing	 data	 (Prado-Martinez	 et	al.,	 2013).	We	 observed	 an	
increase	 in	 average	 fragment	 length	 from	 155.8	bp	 (SD	=	63	bp)	
across	shotgun-sequenced	samples	to	194	bp	(SD	=	77.2	bp)	after	
one	round	of	capture	and	202.5	bp	(SD	=	74.3	bp)	after	two	rounds	
of	capture	(Figure	3a).	We	similarly	observed	a	change	in	the	distri-
bution	of	read	GC	content,	with	average	percentage	GC	increasing	
from	46%	 (SD	=	10.4%)	 in	 shotgun	sequenced	samples,	 to	52.9%	
(SD	=	10.4%)	 after	 one	 round	 of	 capture	 and	 56.4%	 (SD	=	9.1%)	
after	two	rounds	(Figure	3b).	This	pattern	of	GC	bias	was	also	ob-
served	across	target	regions,	with	average	depth	of	coverage	high-
est	 in	 regions	with	55%–65%	GC	(Supporting	 Information	Figure	
S8).	Finally,	we	found	no	pattern	of	decreasing	average	depth	of	
coverage	 with	 increasing	 divergence	 between	 the	 chimpanzee	
and	human	reference	regardless	of	round	of	capture	(Supporting	
Information	Figure	S9).

3.5 | Data validation

The	 average	 number	 of	 reads	 produced	 for	 the	 10	 libraries	
(Pool	 1)	 that	 were	 subject	 to	 deep	 sequencing	 was	 14,755,628	
(range	=	6,341,251–18,622,980),	 resulting	 in	 an	average	depth	of	
coverage	 of	 our	 target	 region	 of	 17.3×	 per	 library	 (range	=	7.6–
24.5×).	 Comparison	 of	 the	 predicted	 and	 observed	 satura-
tion	 curves	 produced	 by	 preseq	 shows	 a	 good	 match,	 although	

F I G U R E  1  The	effect	of	rounds	of	capture,	precapture	percentage	subject	DNA	and	sequencing	effort	on	the	number	of	unique	exome	
reads	(as	predicted	by	preseq).	The	plots	show	the	predicted	data	and	model	at	increasing	sequencing	effort	(at	5,	15	and	20	million	reads	
sequenced	from	left	to	right).	Each	point	represents	a	captured	library,	the	fitted	model	is	shown	as	solid	lines	and	95%	model	confidence	
intervals	are	shown	as	broken	lines	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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three	 libraries	 (N17311,	 N21602,	 N21608)	 had	 1%–2%	 fewer	
unique	 reads	 on-target	 compared	 to	 that	 predicted	 (Supporting	
Information	Figure	S10).	Finally,	our	PCA	shows	that,	as	expected,	

the	10	 samples	 from	 this	 study	 cluster	with	other	 eastern	 chim-
panzee	samples	–	specifically,	with	samples	originating	from	Kibale	
National	Park	(Figure	4).

F I G U R E  2  The	effect	of	rounds	of	capture	on	the	number	of	(a)	drop-out	target	regions	(depth	=	0)	and	(b)	highly	sequenced	regions	
(depth	>	10).	Each	point	represents	a	captured	library,	the	fitted	model	is	shown	as	solid	lines	and	95%	model	confidence	intervals	are	shown	
as	broken	lines	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

× + × + × + × +

(a) (b)

× + × + × + × +

F I G U R E  3  Exploration	of	capture	bias	in	samples	from	Pools	1	and	2.	Density	plots	of	(a)	percentage	of	mapped	reads	of	a	given	insert	
size	and	(b)	percentage	of	all	reads	with	given	GC	proportion.	Lines	are	coloured	by	the	rounds	of	capture:	none/shotgun	in	green,	one	round	
in	red	and	two	rounds	in	blue	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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3.6 | Budget details

If	we	aimed	to	produce	15	million	reads	per	library,	our	model	pre-
dicts	that	we	could	achieve	5,297,949	unique	on-target	reads	(95%	
confidence	 interval:	5,196,338–5,399,560)	 for	samples	with	11.6%	
subject	DNA	(the	average	of	our	110	chosen	faecal	extracts)	using	
a	single	round	of	exome	capture.	Assuming	the	high	correlation	be-
tween	number	of	unique	exome	reads	and	average	depth	of	cover-
age	observed	 in	our	data	 (r2	=	0.97,	Supporting	 Information	Figure	
S11)	continues	when	sequencing	effort	 is	higher,	we	can	 translate	
this	predicted	number	of	unique	on-target	reads	to	an	average	depth	
of	 coverage	 of	 ~13.9×.	We	 consider	 this	 depth	 of	 coverage	 to	 be	
adequate	 for	 most	 downstream	 population	 genetic	 analyses	 and	
therefore	provide	a	detailed	budget	 (Supporting	 Information	Table	
S6)	 based	 on	 the	 above	 conditions	 (i.e.,	 a	 single	 round	 of	 capture	
and	 sequencing	 effort	 that	 is	 equal	 to	 producing	 15	million	 reads	
per	library).	Under	these	conditions	the	cost	per	sample	for	library	
preparation,	hybridization	capture	and	sequencing	 is	~€230	at	the	
time	of	writing,	most	of	which	is	accounted	for	by	sequencing	costs	
(~€194	per	 library;	based	on	multiplexing	~13	 libraries	per	 lane	of	
an	Illumina	2500,	version	3	chemistry).	Including	a	second	round	of	
capture	simply	doubles	the	cost	of	the	capture	step	and	brings	the	
total	cost	to	~€250.	The	cost	of	qPCR/Fragment	Analyzer	screening	
was	roughly	€2	per	extract,	while	the	cost	of	sample	collection,	DNA	
extraction	and	microsatellite	genotyping	will	vary	between	labora-
tories	and	projects.	Thus,	 these	additional	costs	should	be	consid-
ered	on	a	per-project	basis.

In	Figure	5	we	generalize	sequencing	costs	to	provide	a	guide	for	
researchers	wishing	 to	 undertake	 their	 own	 hybridization	 capture	
study	of	 noninvasive	 samples.	 Figure	5	 shows	 the	predicted	num-
ber	of	unique	on-target	 reads	for	various	precapture	subject	DNA	
contents	 at	 increasing	 sequencing	effort	 and	 relates	 this	 effort	 to	
sequencing	 cost.	Our	 cost	 estimates	 are	 based	on	 the	 use	 of	 one	
lane	of	an	Illumina	2500	(version	3	chemistry,	which	produces	~200	
million	reads)	and	relies	on	researchers	multiplexing	to	the	highest	

degree	possible.	For	example,	to	produce	10	million	reads	per	library	
at	a	cost	of	€125	each,	20	libraries	must	be	multiplexed	on	a	single	
lane.	These	predictions	are	based	on	the	specific	protocol	described	
here,	 and	we	discuss	below	how	variations	 in	design,	which	other	
studies	may	wish	to	implement,	may	impact	capture	efficiency	and	
thus	cost.

We	note	that	our	budget	is	based	on	the	cost	of	performing	mo-
lecular	analysis	in	Europe,	and	that	part	of	the	cost	of	sample	collec-
tion	 involves	 shipping	 samples	 out	 of	 range-countries,	which	may	
lack	the	infrastructure	to	conduct	such	experiments.	As	researchers,	
we	should	work	towards	a	situation	in	which	such	analyses	can	be	
performed	in situ,	making	such	extractive	collection	practices	unnec-
essary.	Such	contributions	could	include	support	for	local	infrastruc-
ture,	 or	 providing	mentorship	 to	 local	 students.	 For	 example,	 the	
Ngogo	Chimpanzee	 Project	 supports	 local	 schools	 in	Uganda	 and	
provides	scholarships	for	Ugandan	masters	students	to	conduct	re-
search	at	Kibale	National	Park	(http://ngogochimpanzeeproject.org/
education/).	 Such	 efforts	 are	 important	 to	 create	more	 equitable,	
sustainable,	ethical	and	cost-effective	research	practices.

4  | DISCUSSION

In	 this	 study	we	 successfully	 used	hybridization	 capture	 to	 enrich	
110	libraries	derived	from	faecal	DNA	extracts	for	exome	DNA.	We	
used	 these	 data	 to	 examine	 the	 appropriate	 number	 of	 rounds	 of	
capture	when	using	a	range	of	concentrations	of	subject	DNA	rela-
tive	to	total	DNA,	explore	bias	introduced	by	capture,	and	provide	
a	 roadmap	 for	 future	hybridization	 capture	 studies	of	noninvasive	
samples.

4.1 | Rounds of capture

Our	analysis	shows	that	one	round	of	capture	is	preferable	to	two	
for	 samples	 with	 greater	 than	 ~2%–3%	 subject	 DNA.	 For	 lower	

F I G U R E  4  Principal	components	
analysis	showing	the	genetic	population	
structure	of	our	10	study	samples	
(squares),	and	14	samples	from	other	
studies	(circles	and	triangles).	Samples	
originating	from	Kibale	National	Park,	
Uganda,	are	circled	with	a	broken	
line	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]
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precapture	subject	DNA	proportions	we	predict	that	two	rounds	of	
capture	are	optimal,	although	further	experimental	work	is	needed	
to	confirm	this.	It	is	possible	that	the	correlation	of	capture	success	
with	 precapture	 subject	 DNA	 proportions	may	 become	 nonlinear	
at	 lower	values	due	 to,	 for	example,	 increased	 rates	of	misbinding	
between	baits	and	library	DNA,	leading	to	deviation	from	our	pre-
dictions.	 Although	 a	 number	 of	 studies	 focused	 on	 ancient	 DNA	
provide	some	evidence	that	the	correlation	of	capture	success	with	
precapture	subject	DNA	proportions	holds	for	lower	quality	samples	
(Ávila-Arcos	et	al.,	2015;	Carpenter	et	al.,	2013;	Cruz-Dávalos	et	al.,	
2017,	2018),	these	studies	lack	the	sample	sizes	needed	for	statisti-
cal	tests	of	this	hypothesis.	Thus,	further	experimental	work	on	sam-
ples	with	low	proportions	of	subject	DNA	are	necessary.

Our	results	appear	to	contrast	with	a	recent	study	that	also	fo-
cused	on	exome	hybridization	capture	using	DNA	from	chimpanzee	
faecal	samples.	Hernandez-Rodriguez	et	al.	(2018)	found	two	rounds	
of	capture	to	be	more	efficient	for	samples	with	a	range	of	subject	
DNA	from	0.16%	to	24.6%.	However,	more	than	half	of	the	samples	
in	that	study	(10–12	of	18)	were	below	our	~2%–3%	cut-off	value,	
and	 the	 interaction	 between	 subject	DNA	 content	 and	 rounds	 of	
capture	 was	 not	 accounted	 for	 in	 the	 Hernandez-Rodriguez	 et	al.	
(2018)	model.	Thus,	their	recommendation	does	not	contradict	the	
results	presented	here,	but	probably	reflects	the	quality	distribution	
of	 their	 sample	 set,	 with	 the	majority	 of	 their	 samples	 benefiting	
from	two	rounds	of	capture.

4.2 | Bias introduced by capture

Our	analysis	of	capture	bias	showed	that	samples	subjected	to	two	
rounds	of	capture	were	more	likely	to	have	more	highly	sequenced	
target	regions,	but	that	this	comes	at	the	cost	of	drop-out	at	other	
regions.	This	result,	and	our	visual	inspection	of	depth	of	coverage	
across	 the	 target	space	and	across	samples,	 shows	 that	capture	 is	

indeed	biasing	our	sequencing	results	towards	some	target	regions	
and	away	from	others,	and	that	this	effect	is	exacerbated	in	librar-
ies	 subject	 to	 two	 rounds	of	 capture.	 This	means	 that	 even	when	
the	number	of	unique	reads	mapping	to	the	exome	is	equal	across	
samples,	samples	captured	in	one	round	will	have	more	uniform	cov-
erage	across	the	target	space	compared	to	samples	captured	twice.	
This	 result	has	 implications	for	 the	preferred	number	of	 rounds	of	
capture.	 Our	model	 of	 rounds	 of	 capture	 is	 based	 on	maximizing	
the	 number	 of	 unique	 exome	 reads,	 regardless	 of	 the	 distribution	
of	reads	across	the	target	space.	Thus,	although	we	predict	that	two	
rounds	of	capture	will	maximize	the	unique	exome	reads	for	samples	
with	less	than	2%–3%	subject	DNA,	researchers	dealing	with	such	
samples	must	also	consider	 the	 increase	 in	bias,	 and	effective	de-
crease	in	total	target	space,	that	two	rounds	will	confer.

We	explored	three	possible	drivers	of	capture	bias:	GC	content,	
fragment	length,	and	divergence	between	bait	sequence	and	target	
DNA	sequence.	We	found	that	the	distribution	of	read	GC	content	
narrowed	with	successive	rounds	of	capture	and	that	target	regions	
with	GC	proportions	 in	the	range	of	55%–65%	had	higher	average	
depth	of	coverage.	This	indicates	that	GC	content	is	a	probable	driver	
of	 capture	 bias,	 as	 has	 been	 shown	 previously	 (Ávila-Arcos	 et	al.,	
2015;	Cruz-Dávalos	et	al.,	2017).	Conversely,	we	found	no	decrease	
in	average	depth	of	coverage	across	target	regions	with	increasing	
divergence	between	the	chimpanzee	and	human	genome.	This	is	in	
agreement	with	previous	work	on	chimpanzee	exome	capture	using	
human	baits	(Jin	et	al.,	2012;	Vallender,	2011),	and	suggests	that	the	
overall	divergence	between	the	chimpanzee	target	DNA	and	human	
bait	sequences	is	not	large	enough	to	interfere	with	capture	success,	
with	the	large	majority	of	regions	having	less	than	2%	mismatches.	
Also	 in	 agreement	with	 previous	 studies	 (Ávila-Arcos	 et	al.,	 2015;	
Carpenter	et	al.,	2013;	Enk	et	al.,	2014),	we	observed	an	increase	in	
average	fragment	length	in	captured	libraries	compared	to	shotgun	
data.	 Ávila-Arcos	 et	al.	 (2015)	 hypothesized	 that	 fragment	 length	

F I G U R E  5  Predicted	number	of	exome	
reads,	for	samples	of	various	subject	DNA	
percentages,	at	increasing	sequencing	
effort/cost	using	a	single	round	of	
capture.	Broken	grey	lines	represent	the	
estimated	number	of	reads	needed	to	
achieve	5×,	10×	and	20×	(from	bottom	
to	top)	average	depth	of	coverage	of	our	
target	space	(the	exome).	Sequencing	cost	
per	library	is	calculated	based	on	the	use	
of	one	flow	cell	of	an	Illumina	HiSeq	2500	
(version	3	chemistry)	[Colour	figure	can	be	
viewed	at	wileyonlinelibrary.com]
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bias	may	be	a	result	of	the	distribution	of	bait	lengths,	with	longer	
baits	 biasing	 against	 smaller	 target	 molecules.	 Unfortunately,	 we	
were	unable	 to	 test	 this	 hypothesis,	 as	well	 as	 a	 number	of	 other	
possible	drivers	of	bias	 (e.g.,	 tiling	density,	bait	sequence	content),	
due	to	our	use	of	commercial	baits,	for	which	we	have	no	informa-
tion	on	bait	design.	Further	work	on	capture	bias	should	use	custom	
bait	sets	to	fully	explore	the	drivers	of	capture	bias,	and	such	work	
could	then	be	used	to	improve	bait	design	and	reduce	bias	in	capture	
studies.

4.3 | Roadmap for hybridization 
capture of noninvasive samples

We	 were	 able	 to	 incorporate	 sequencing	 effort	 into	 our	 analysis	
of	rounds	of	capture	by	using	predictions	from	the	program	preseq,	
which	we	 validated	 by	 sequencing	 10	 libraries	 to	 higher	 depth	 to	
show	a	good	match	between	predictions	and	observations.	This	ap-
proach	allowed	us	to	relate	sample	quality	(as	measured	by	subject	
DNA	content)	 to	sequencing	costs	and/or	probable	data	yields,	 to	
assist	in	project	planning	of	future	research.	For	example,	achieving	
an	 average	 depth	 of	 5×	 for	 the	 chimpanzee	 exome,	 from	 samples	
with	2%	 subject	DNA,	 requires	 roughly	10	million	 reads	per	 sam-
ple,	which	translates	to	a	cost	of	€125	each	(plus	the	cost	of	library	
preparation	and	capture,	Supporting	Information	Table	S6).

Our	results	can	be	used	as	a	guide	to	the	feasibility	of	hybrid-
ization	capture	wherever	 researchers	possess	a	 reasonable	under-
standing	 of	 the	 depth	 of	 coverage	 needed	 for	 the	 study	 at	 hand,	
and	 awareness	 about	 the	quality	of	 available	 samples.	The	neces-
sary	depth	of	 coverage	will	 depend	on	 the	 research	question	 and	
desired	 analytical	 framework	 of	 a	 particular	 study.	 For	 example,	
although	 single	 nucleotide	 variant	 calling	 is	 usually	 only	 recom-
mended	for	samples	with	depths	of	coverage	greater	than	15–20×	
(Meynert,	Ansari,	 FitzPatrick,	&	Taylor,	 2014;	 Sims,	 Sudbery,	 Ilott,	
Heger,	&	Ponting,	2014),	an	increasing	number	of	population	genetic	
software	can	accommodate	low	to	medium	coverage	(4–15×)	data	by	
using,	for	example,	genotype	likelihoods	or	haploid	calling	methods	
(Korneliussen	&	Moltke,	2015;	Therkildsen	&	Palumbi,	2017;	Vieira,	
Albrechtsen,	&	Nielsen,	2016;	Wall	et	al.,	2016).

With	 regard	 to	sample	quality,	we	highly	 recommend	sampling	
extensively	and	prescreening	extracts.	Our	results	show	that	sam-
ples	with	<2%	subject	DNA	would	only	yield	small	amounts	of	data	
using	 the	 protocols	 presented	 here,	 even	 after	 switching	 to	 two	
rounds	of	capture	(see	below	for	a	discussion	of	other	possible	pro-
tocol	modifications).	The	proportion	of	our	sample	set	that	met	our	
criteria	 (2%	 subject	DNA	and	6	ng/μl	ng	 total	DNA	concentration)	
was	17%,	but	this	is	likely	to	vary	widely	across	species,	collection	
environments	and	collection	methods.	Pilot	studies	that	character-
ize	the	quality	distribution	of	sample	sets	can	inform	researchers	of	
the	 total	 number	 of	 samples	 that	 need	 to	 be	 collected	 to	 reach	 a	
desired	number	of	usable	samples.	Generally,	we	expect	the	number	
of	usable	samples	to	scale	proportionally	with	the	total	number	of	
samples	 collected,	 and	 thus	 sampling	 as	 extensively	 as	 possible	 is	
recommended.

Screening	 extracts	 not	 only	 allows	 selection	 of	 samples	 most	
likely	to	yield	usable	data,	but	is	also	imperative	for	equitable	pool-
ing	prior	to	capture	to	reduce	sequencing	bias.	However,	our	qPCR/
Fragment	Analyzer	estimate	of	subject	DNA	content	was	only	mod-
erately	correlated	with	the	estimate	derived	from	shotgun	sequenc-
ing.	This	could	be	due	to	differences	in	sensitivity	to	fragment	length	
(our	qPCR	assay	can	only	assess	fragments	larger	than	81	bp,	while	
we	can	map	sequenced	fragments	as	short	as	35	bp),	compounded	by	
biases	toward	smaller	fragments	during	library	preparation	(Dabney	
&	Meyer,	2012;	Enk,	Rouillard,	&	Poinar,	2013).	Unless	more	accurate	
screening	assays	are	available	or	can	be	developed	for	the	study	spe-
cies,	we	recommend	shallow	shotgun	sequencing	prior	to	pooling	to	
re-estimate	the	percentage	of	subject	DNA	in	each	library.

4.4 | Caveats and other considerations

The	generalizability	of	our	results	does	of	course	have	limits.	A	num-
ber	 of	 variables	 that	we	did	 not	 test	 can	meaningfully	 impact	 the	
efficiency	of	hybridization-enrichment,	and	these	factors	should	be	
considered	when	predicting	yields	and	making	cost	estimates.	First,	
the	size	of	the	target	space	is	directly	related	to	the	number	of	reads	
required	to	reach	a	given	depth	of	coverage.	Our	target	space	was	
~60	Mb,	and	smaller	or	 larger	spaces	will	proportionally	affect	the	
cost	of	bait	 synthesis	and	sequencing.	Second,	 studies	on	capture	
efficiency	across	scales	of	divergence	 indicate	that	 increased	evo-
lutionary	 distance	 between	 the	 species	 for	 which	 the	 baits	 were	
designed	and	the	target	species	will	decrease	capture	efficiency,	par-
ticularly	for	divergence	estimates	exceeding	20	million	years	(Bragg	
et	al.,	 2016;	 Jin	 et	al.,	 2012;	 Portik	 et	al.,	 2016).	 This	 is	 especially	
important	for	species	that	do	not	yet	have	a	high-quality	reference	
genome.	Third,	because	commercial	baits	are	generally	designed	for	
high-quality	DNA,	these	bait	sets	may	not	be	as	efficient	for	DNA	
from	 noninvasive	 samples,	 and	 redesign	with	 increased	 bait	 tiling	
density	(i.e.,	the	average	number	of	unique	bait	molecules	that	cover	
each	position	of	the	target	sequence)	may	improve	capture	success	
(Bodi	 et	al.,	 2013;	Clark	et	al.,	 2011).	However,	 such	drawbacks	of	
pre-designed,	“off-the-shelf”	options	should	be	weighed	against	the	
fact	that	custom-designed	bait	sets	are	generally	(depending	on	tar-
get	space	and	tiling	density)	more	expensive.

Other	modifications	 to	our	protocol	may	also	 increase	capture	
efficiency	 and	 accommodate	 lower	 quality	 samples.	 For	 example,	
increasing	the	amount	of	DNA	per	 library	 in	a	capture	reaction	by	
lowering	the	number	of	pooled	libraries	(and	keeping	the	total	input	
amount	the	same)	should	increase	the	number	of	unique	fragments	
per	sample	available	for	capture	and	thus	increase	the	post-capture	
library	 complexity	 (McCartney-Melstad,	Mount,	 &	 Shaffer,	 2016).	
Similarly,	 preparing	 multiple	 libraries	 and/or	 conducting	 multiple	
captures	per	sample	may	also	prove	more	cost-efficient	than	deep	
sequencing	 of	 a	 singly	 captured	 library,	 particularly	 for	 very	 low-
quality	 samples	 (Hernandez-Rodriguez	 et	al.,	 2018).	 These	modifi-
cations	unavoidably	increase	the	cost	of	library	preparation,	capture	
and	sequencing	per	sample,	but	may	allow	researchers	to	obtain	use-
able	data	for	samples	with	<2%	subject	DNA.
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A	final	consideration	for	studies	in	which	faecal	samples	are	col-
lected	from	unobserved	animals	is	the	possible	inadvertent	sampling	
of	nontarget	conspecific	species	(Arandjelovic	et	al.,	2010),	and	com-
plications	arising	from	the	presence	of	diet-related	DNA	(Hofreiter,	
Kreuz,	Eriksson,	Schubert,	&	Hohmann,	2010).	Distinguishing	differ-
ent	species’	 remains	can	be	achieved	through	mitochondrial	or	mi-
crosatellite	DNA	analysis.	Microsatellite	genotyping	is	also	necessary	
to	identify	unique	individuals	and	thus	should	be	considered	a	nec-
essary	part	of	the	screening	process.	For	example,	our	samples	were	
first	subjected	to	analysis	at	15	microsatellite	loci	and	categorized	as	
individuals	 in	 the	context	of	 a	 long-running	project	 (Granjon	et	al.,	
2017;	Langergraber,	Mitani,	&	Vigilant,	2007;	Langergraber,	Watts,	
Vigilant,	&	Mitani,	2017).	We	could	therefore	be	confident	that	our	
putative	 chimpanzee	 samples	 were	 indeed	 from	 chimpanzees.	 A	
more	insidious	issue	is	the	concurrent	presence	of	diet-related	DNA	
from	closely	related	species.	For	example,	chimpanzees	are	known	to	
hunt	and	eat	various	species	of	sympatric	primates	(Watts	&	Mitani,	
2002),	which	could	result	 in	other	primate	DNA	being	co-captured	
during	hybridization.	This	 has	 the	potential	 to	 impact	downstream	
analyses,	especially	at	conserved	genetic	regions.	Therefore,	the	de-
velopment	of	bioinformatic	tools	to	identify	contaminated	extracts	
from	shallow	shotgun	data,	or	 remove	or	account	 for	 contaminant	
reads	 in silico,	 as	 is	 possible	 for	 studies	 of	 ancient	 DNA	 (Racimo,	
Renaud,	 &	 Slatkin,	 2016;	 Renaud,	 Slon,	 Duggan,	 &	 Kelso,	 2015;	
Skoglund	et	al.,	2014),	should	be	considered	a	high	priority.

5  | CONCLUSION

Our	study	adds	to	a	growing	body	of	literature	showing	that	large-
scale	genomic	studies	are	feasible	for	noninvasive	samples	through	
hybridization	 capture,	 and	 provides	 further	 data	 to	 help	 optimize	
such	 research.	 To	 our	 knowledge	 this	 study	 represents	 the	 first	
exploration	 of	 the	 appropriate	 rounds	 of	 capture	 with	 respect	 to	
sample	quality,	 finding	that	one	round	of	capture	 is	more	efficient	
for	samples	with	more	than	~2%–3%	subject	DNA.	Additionally,	we	
have	confirmed	that	successive	rounds	of	capture	introduce	biases	
to	 sequencing	 data,	 with	 fewer	 rounds	 of	 capture	 ensuring	 more	
even	coverage	across	the	target	space.	We	have	presented	detailed	
protocols,	budgets	and	model	output	to	act	as	a	guide	for	research-
ers	wishing	to	implement	hybridization	capture	of	noninvasive	sam-
ples	 and	 show	 that,	 with	 an	 understanding	 of	 sample	 availability,	
quality	and	necessary	data	yields,	the	feasibility	of	such	studies	can	
be	easily	assessed.
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