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Abstract
Large‐scale genomic studies of wild animal populations are often limited by access to 
high‐quality DNA. Although noninvasive samples, such as faeces, can be readily col-
lected, DNA from the sample producers is usually present in low quantities, frag-
mented, and contaminated by microorganism and dietary DNAs. Hybridization 
capture can help to overcome these impediments by increasing the proportion of 
subject DNA prior to high‐throughput sequencing. Here we evaluate a key design 
variable for hybridization capture, the number of rounds of capture, by testing 
whether one or two rounds are most appropriate, given varying sample quality (as 
measured by the ratios of subject to total DNA). We used a set of 1,780 quality‐as-
sessed wild chimpanzee (Pan troglodytes schweinfurthii) faecal samples and chose 110 
samples of varying quality for exome capture and sequencing. We used multiple re-
gression to assess the effects of the ratio of subject to total DNA (sample quality), 
rounds of capture and sequencing effort on the number of unique exome reads se-
quenced. We not only show that one round of capture is preferable when the propor-
tion of subject DNA in a sample is above ~2%–3%, but also explore various types of 
bias introduced by capture, and develop a model that predicts the sequencing effort 
necessary for a desired data yield from samples of a given quality. Thus, our results 
provide a useful guide and pave a methodological way forward for researchers wish-
ing to plan similar hybridization capture studies.
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1  | INTRODUC TION

The dynamics of wild animal populations may be effectively re-
vealed through genetic analyses. Microsatellites have been the 
backbone of such population genetic studies since the early 
1990s, enabling study of parentage assignment, individual dis-
crimination, abundance estimation and demographic inferences, 
among other topics (Ashley & Dow, 1994; Morin et al., 1994; 
Paetkau & Strobeck, 1994). However, by today's standards, mi-
crosatellites represent a very small amount of genetic data and 
provide relatively modest power, making questions such as the 
reliable assessment of familial kin relationships or genetic signals 
of local adaptation inaccessible (Gienapp et al., 2017; Städele & 
Vigilant, 2016). The availability and use of high‐throughput se-
quencing technology has exploded over the last two decades and 
has been applied to various wild animal populations, such as in the 
study of admixture in baboons (Wall et al., 2016), genomic signals 
of adaptation in finless dolphins (Zhou et al., 2018) and recom-
bination rate variation in wild red deer (Johnston, Huisman, Ellis, 
& Pemberton, 2017). However, the trapping or darting of animals 
necessary for obtaining high‐quality DNA samples is often im-
practical for ethical and logistical reasons. Although noninvasive 
samples such as faeces can typically be readily collected, DNAs 
isolated from such samples are often fragmented, present in low 
quantities, and contaminated by microorganism and dietary DNA, 
rendering standard high‐throughput sequencing from more than a 
few individuals cost‐prohibitive.

To reduce sequencing costs and improve data quality, researchers 
have begun to use hybridization capture (also termed enrichment) to 
increase the proportion of subject DNA in sequencing libraries pre-
pared from noninvasive samples (Hernandez‐Rodriguez et al., 2018; 
Perry, Marioni, Melsted, & Gilad, 2010; Snyder‐Mackler et al., 2016; 
van der Valk, Durazo, Dalén, & Guschanski, 2017). These methods 
involve first hybridizing target DNA to DNA or RNA baits, then im-
mobilizing the target/bait complex, and washing away nontarget 
DNA fragments before sequencing. Optimization experiments have 
shown that bait characteristics, sample characteristics and exper-
imental conditions all impact capture efficiency (Ávila‐Arcos et al., 
2015; Bragg, Potter, Bi, & Moritz, 2016; Carpenter et al., 2013; Cruz‐
Dávalos et al., 2017; Enk et al., 2014; Hernandez‐Rodriguez et al., 
2018; Mason, Li, Helgen, & Murphy, 2011; Paijmans, Fickel, Courtiol, 
Hofreiter, & Förster, 2016; Portik, Smith, & Bi, 2016; Schott et al., 
2017).

Despite such efforts towards the optimization of hybridization 
capture, several factors hamper the cost‐effective use of the large 
number of noninvasive samples needed for population‐level stud-
ies. For example, although conducting successive rounds of capture 
can increase the proportion of nontarget DNA that is removed (thus 
increasing library “specificity”), each round of capture necessitates 
more cycles of PCR, thereby increasing the proportion of duplicate 
(i.e., redundant) reads in the library (thus decreasing library “com-
plexity”). The impact of low library complexity may only become 
apparent as sequencing effort increases, because as more and more 

sequences are produced from a given library, the probability of a new 
read representing a PCR duplicate theoretically increases until every 
new read represents redundant information. At this point, a DNA 
library made from the sample is effectively saturated, and no new 
information can be derived from increased sequencing. Libraries of 
lower complexity reach saturation earlier and require more sequenc-
ing effort to reach similar data yields compared to libraries of equal 
specificity, but greater complexity.

This trade‐off between library specificity and complexity leads 
to different recommendations for samples of high and low quality. 
For samples of higher quality, one round of capture may suffice to 
provide adequate library specificity, but for lower quality samples, 
two rounds of capture are generally recommended, despite the 
resulting decrease in library complexity. However, because hybrid-
ization studies have generally focused either on very high‐quality 
(e.g., tissue; Bragg et al., 2016) or low‐quality (e.g., ancient DNA; 
Carpenter et al., 2013) samples, it is unclear at what level of sample 
quality (i.e., proportion of subject DNA in an extract) two capture 
rounds provides greater sequencing efficiency than one. This is es-
pecially important for studies of noninvasive samples, which typi-
cally exhibit high variation in quality (Taberlet & Luikart, 1999). Note 
that throughout this paper we refer to sample DNA “quality” as the 
proportion of subject DNA to total DNA, a readily assessed measure. 
Other aspects of sample quality, such as fragmentation and damage‐
induced misincorporations, are less quantifiable prior to sequencing 
and are not addressed here.

We use a large set of noninvasive samples from wild eastern 
chimpanzees (Pan troglodytes schweinfurthii) to explicitly examine 
how the proportion of subject DNA in the extracts and the number 
of rounds of capture interact to influence the efficiency of hybrid-
ization capture and high‐throughput sequencing (as measured by the 
ratio of unique on‐target reads to total reads sequenced). We cap-
tured chimpanzee exome DNA in one or two rounds and used multi-
ple regression analysis to determine the threshold of sample quality 
at which two rounds of capture confers a greater ratio of unique 
reads mapping to the exome to total reads sequenced.

Because the standard method of pooling samples for capture 
according to molarity may lead to sequencing bias across samples 
within a pool (Hernandez‐Rodriguez et al., 2018), we conducted 
shotgun sequencing to re‐estimate the proportion of subject DNA in 
each sequencing library. This enables us to compare two measures 
(qPCR/Fragment Analyzer vs. shotgun) of percentage subject DNA 
in each library, and to construct pools of samples with similar propor-
tions of subject DNA prior to capture, a practice recommended by 
Hernandez‐Rodriguez et al. (2018) to minimize sequencing bias. We 
also explored within‐sample bias introduced by successive rounds of 
capture by examining evenness of capture across the target space 
and three possible drivers of bias: GC content, fragment length, and 
divergence between the bait‐design species (human) and the target 
species (chimpanzee).

By incorporating sequencing effort in our multiple regression 
model, we are able to show how the expected data yield (i.e., the 
number of uniquely mapped reads) varies with sample quality and 
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sequencing effort, or alternatively, the extent of sequencing re-
quired to reach a desired data yield for samples of a given quality, 
thus providing a useful guide to the feasibility of hybridization cap-
ture. Finally, to further facilitate future research we present detailed 
protocols and budget summaries. Our results provide a method-
ological way forward for large‐scale hybridization capture‐based 
studies of noninvasive samples, and highlight the importance of ex-
plicit consideration of sample availability and quality when project 
planning.

2  | METHODS

For easy reference, a simple schematic detailing the various steps of 
our protocol is provided in Supporting Information Figure S1.

2.1 | Sample collection and screening

Chimpanzee faecal samples were collected opportunistically during 
routine surveys for the removal of illegal snares at Kibale National 
Park, Uganda, from 2011 to 2016 and were stored using a two‐step 
ethanol–silica preservation method (Nsubuga et al., 2004). As part of 
an on‐going population size monitoring project, DNA was extracted 
from these faecal samples using either the GeneMATRIX Stool DNA 
Purification Kit (Roboklon) according to the manufacturer's instruc-
tions or QIAmp Stool kit (Qiagen) with slight modifications from 
the manufacturer's protocol (Nsubuga et al., 2004). Microsatellite 
genotyping was performed to establish sex and individual identity 
as previously described (Arandjelovic et al., 2009; Granjon, Rowney, 
Vigilant, & Langergraber, 2017). We considered only extracts that 
were successfully genotyped at enough loci to confidently assign 
an ID (for details see Granjon et al., 2017) for exome sequencing. 
Additionally, two tissue samples were collected from two deceased 
chimpanzees found within Kibale. These samples were collected in 
RNAlater (Ambion), extracted using the DNeasy Blood and Tissue kit 
(Qiagen) and also microsatellite genotyped.

Because the DNA present in each faecal extract is expected to 
derive from bacterial, fungal and dietary sources as well as the chim-
panzee itself, we estimated the concentration of amplifiable chim-
panzee DNA in each extract using a qPCR assay designed by Morin, 
Chambers, Boesch, and Vigilant (2001) with some modifications. 
Reactions were performed in triplicate using 1 μl of extract or DNA 
standard, 1× Maxima SYBR Green Mastermix (Thermo Scientific) 
and 0.3 μM forward and reverse primer. All qPCRs included no‐tem-
plate controls and were performed on a Bio‐Rad CFX96 instrument 
with the following cycling conditions: 95°C for 15 min, followed by 
40 cycles of 94°C for 30 s, 59°C for 30 s and 72°C for 30 s with 
a plate read after every cycle. We then measured the total DNA 
content of each extract using the Fragment Analyzer System (Large 
Fragment Standard Sensitivity Kit; Advanced Analytical). We de-
fine the estimated fraction of subject DNA in each extract as the 
estimated chimpanzee DNA concentration divided by the total DNA 
concentration.

2.2 | Library preparation

Along with the two tissue extracts which serve as high‐quality DNA 
controls, we chose 110 faecal extracts, each representing a unique 
individual, for exome sequencing based on their estimated percent-
age of subject DNA relative to total DNA concentration. Because 
studies of ancient DNA found that hybridization capture of samples 
with <1% subject DNA yielded only small amounts of useable data 
(Ávila‐Arcos et al., 2015; Cruz‐Dávalos et al., 2018), we conserva-
tively chose extracts with more than 2% subject DNA. In addition, 
we only used samples with total DNA concentrations >6 ng/μl so 
that we could remove 200 ng for library preparation without need-
ing to concentrate the extract.

Recent published works, and our own Fragment Analyzer results 
(chromatograms, data not shown), show that fragment length distri-
butions of faecal sample extracts are extremely varied, both across 
and within samples, and that such samples require shearing to acquire 
shorter and more normally distributed fragment lengths for library 
preparation (Hernandez‐Rodriguez et al., 2018; van der Valk et al., 
2017). Hernandez‐Rodriguez et al. (2018) found that shorter fragments 
already below the target size were not further fragmented through 
sonication (which may have led to a loss of useable data), probably be-
cause of the exponentially higher amount of energy required to shear 
shorter fragments. Thus, our selected extract DNAs were sheared to 
200‐bp fragments using the Covaris S2 ultrasonicator (Covaris) under 
the following settings: intensity 5, duty cycle 10%, cycles per burst 
200, treatment time 120 s, temperature 7°C and water level 14.

We converted 200 ng of sheared extract into Illumina sequenc-
ing libraries using the “BEST” method described by Carøe et al. 
(2018), with some modifications described in detail in the Supporting 
Information. After library preparation, two PCRs were performed 
in parallel using the purified nick‐repaired products. One PCR, con-
ducted to prepare the libraries for shotgun sequencing, used adapter‐
targeted primers with a 5′ tail incorporating the full indexing adapter 
(P5/P7 Indexing Primers, Supporting Information Table S1). The 
other PCR, done to prepare the libraries for hybridization capture, 
used adapter‐targeted primers without the extended sequence (i.e., 
without the index and the remainder of the Illumina adapter, P5/P7 
PreHyb Primers, Supporting Information Table S1). PCRs were per-
formed in 50‐μl volumes using 5 μl of template, 1× Phusion Mastermix 
(Thermo Scientific) and 0.5 μM forward and reverse primer under the 
following conditions: 98°C for 30 s, followed by 8–10 cycles (depend-
ing on qPCR results, Supporting Information) of 98°C for 10 s, 60°C 
for 30 s and 72°C for 30 s, followed by 72°C for 5 min.

Libraries prepared for shotgun sequencing were pooled in equi-
molar concentrations, and 2 μl of each library blank was added to the 
pool. The pool was then sequenced on one lane of an Illumina HiSeq 
2500 (125‐bp read lengths, paired‐end).

2.3 | Hybridization capture

Our experimental design was constructed to assess the suitabil-
ity of one versus two rounds of capture for libraries with varied 
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subject DNA content. A recent study on noninvasive sample hy-
bridization capture found a high correlation between subject DNA 
content and total number of reads sequenced across pooled librar-
ies (Hernandez‐Rodriguez et al., 2018). The authors suggest an ap-
proach to reduce sequencing bias in which all samples are pooled 
in equitable ratios with respect to subject DNA prior to capture (in 
contrast to the standard equimolar ratios). As such, it is important to 
accurately estimate the percentage of subject DNA for each library. 
Therefore, following data processing and read mapping (see below), 
we used the shotgun sequencing data to re‐estimate the percentage 
subject DNA (as the number of unique mapped reads divided by total 
reads sequenced) prior to hybridization capture.

We then calculated the subject DNA molarity of each library by 
multiplying total molarity by percentage subject DNA as estimated 
from shotgun sequencing. This value was used to pool faecal sample 
libraries equitably into 11 groups of 10 libraries (Table 1). The two 
tissue sample libraries were pooled separately, captured once and 
used as positive controls. Five faecal sample pools were captured 
once; the remaining six were captured in two rounds.

Many capture experiments sequence the same library after each 
round of capture to have a matched comparison of one versus two 
rounds (Hernandez‐Rodriguez et al., 2018; van der Valk et al., 2017). 
We chose to eschew such a design for two reasons. First, our large 
sample size allows meaningful analysis without matched sampling. 
Second, removing a portion of the library after the first round of 
capture will reduce the total amount of DNA (already significantly 
reduced during the first round of capture) available for the second 
round of capture, potentially biasing the results.

We chose SureSelect XT Human All Exon version 6 RNA Library 
baits (target space ~60 Mb, Agilent) for the enrichment of libraries 
because human exome baits have been used to capture chimpanzee 
exomes successfully in the past (Jin et al., 2012; Vallender, 2011). 
We followed a modified version of the manufacturer's protocol 
using homemade buffers and custom xGen blocking oligos (P5/P7 
Blocking Oligos, IDT), which use proprietary modifications to block 

the barcode sequences and increase the melting temperature of 
blocker–adapter duplexes. Our protocol is provided in detail in the 
Supporting Information. After enrichment via one or two rounds 
of capture (Table 1), all library‐pools were then pooled at equimo-
lar concentrations and the pool was sequenced on two lanes on the 
Illumina HiSeq 2500 using paired‐end, 125‐bp read lengths.

2.4 | Sequence processing

Raw reads were demultiplexed and internal barcodes were removed 
using sabre (https://github.com/najoshi/sabre) allowing for a sin-
gle mismatch (−m = 1). Adapter contamination was trimmed using 
bbduk (part of the bbtools software suite: http://jgi.doe.gov/data-
and-tools/bbtools/) and reads overlapping by 10 bp or more were 
merged using flash (Magoč & Salzberg, 2011). We mapped reads to 
the chimpanzee reference genome (panTro4) using bbmap with de-
fault settings. Collapsed and paired reads were mapped separately 
and the resultant bam files were merged and sorted using samtools 
(Li et al., 2009). Duplicate reads were identified and removed using 
picardtools (http://broadinstitute.github.io/picard/) and reads were 
filtered by minimum length (35 bp) and a minimum mapping qual-
ity score of 30 using the reformat option of bbtools. Target regions 
(as provided by Agilent) were translated from hg19 coordinates 
to panTro4 using the liftover utility from the UCSC (University of 
California Santa Cruz) Genome Browser with default parameters 
(Kuhn, Haussler, & Kent, 2013). Finally, reads mapping to the target 
region were extracted using bedtools  intersectbed (Quinlan & Hall, 
2010). From the resulting bam files we extracted read counts and 
coverage information using a combination of samtools and bedtools.

We estimated library complexity and saturation curves for each 
library individually using the lc_extrap option of preseq (Daley & Smith, 
2013). preseq uses duplication rate information from shallow sequenc-
ing experiments to predict the gain in unique reads from increased 
sequencing effort. However, preseq was not designed for capture ex-
periments and ignores off‐target reads. We therefore modified the 

Pool
Number of 
libraries

Percentage subject DNA in 
librariesa  Rounds of capture

1 10 22.7–37.4 1

2 10 17.6–21.9 2

3 10 15.3–17.5 1

4 10 13.4–15.1 2

5 10 10.3–12.5 1

6 10 9.3–10.3 2

7 10 8.2–9.2 1

8 10 6.3–8.0 2

9 10 5.5–6.3 1

10 10 3.8–5.2 2

11 10 1.7–3.0 2

12b  2 79.0–87.0 1

aEstimated using shotgun sequencing. bPool 12 is the tissue sample library pool.

TA B L E  1  Experimental design to 
assess the outcome of one versus two 
rounds of capture

https://github.com/najoshi/sabre
http://jgi.doe.gov/data-and-tools/bbtools/
http://jgi.doe.gov/data-and-tools/bbtools/
http://broadinstitute.github.io/picard/
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preseq output to correct the amount of required sequencing by the 
fraction of on‐target reads in the libraries. This modification results in 
varying “sequenced reads” values for each library analysed. To allow 
valid comparisons to be made across libraries, we used linear inter-
polation to extract the predicted number of unique reads for a given 
number of sequenced reads for all samples. R‐code for the preseq 
output modification and linear interpolation are available on github 
(https://github.com/mtrw/white_etal_preseq_hybcap).

2.5 | Analysis of capture rounds

Our measure of capture efficiency is the number of unique (i.e., non-
redundant) reads that map to the target region (the exome) out of the 
total number of reads sequenced (proportion of unique, on‐target 
reads). We aimed to assess how the proportion of unique, on‐target 
reads is impacted by the number of rounds of capture, in interaction 
with the ratio of subject to total DNA (sample quality). However, the 
proportion of unique, on‐target reads is not static in regard to sequenc-
ing effort because, as sequencing effort increases, DNA libraries will 
approach the saturation point at variable rates, depending on complex-
ity. When saturation is reached, all unique reads have been exhausted 
and all new reads represent duplicate (i.e., redundant) information. We 
therefore also included sequencing effort in our multiple regression 
model by measuring the number of unique on‐target reads at various 
levels of sequencing effort as provided by the modified preseq output.

Specifically, after excluding the tissue‐sample control libraries, 
we had 110 faecal sample libraries measured at eight levels of se-
quencing effort (i.e., 2, 5, 8, 11, 14, 15, 17 and 20 million total reads 
sequenced, n = 8 × 110 = 880). We evaluated the predicted number 
of unique on‐target reads (response variable) for various values of 
total reads sequenced (modified from the original preseq output as 
above). This allowed us to include and standardize sequencing effort 
as a predictor in our model, as well as examine the probable impact 
of the number of rounds of capture at higher sequencing depths 
than we actually produced. Our other predictors were the number 
of rounds of capture (one or two) and the precapture percentage 
of subject DNA in each library (estimated from shotgun sequencing 
results). We included the three‐way interaction of our predictors and 
all lower terms this encompassed.

Prior to fitting the model we examined the distribution of each 
predictor, and log‐transformed the precapture percentage of subject 
DNA to achieve a more symmetrical distribution. We then z‐trans-
formed the two covariate predictors to yield comparable estimates 
and a more easily interpretable model (Schielzeth, 2010). To verify 
the assumptions of normality and homogeneously distributed resid-
uals we visually inspected a qqplot and scatterplot of the residuals 
plotted against fitted values. These and diagnostics of model sta-
bility (leverage, dffits and Cook's distance) suggested some poten-
tially influential cases (Quinn & Keough, 2002). However, fitting the 
model with these data points excluded revealed essentially identical 
results as the model based on all data, and hence we report the re-
sults obtained from the complete data set. To test for collinearity 
we checked variance inflation factors (VIFs; Zuur, Ieno, & Elphick, 

2010) of the model excluding interactions, which indicated that col-
linearity was not an issue (largest VIF = 1.13). We fit the model in r 
(version 3.4.2; R Core Team, 2017) using the function lm, and first 
compared the full model to the null model (comprising just the in-
tercept) using an F‐test, before examining individual effects includ-
ing the interactions (Forstmeier & Schielzeth, 2011). R‐code for our 
model implementation is available on github (https://github.com/
mtrw/white_etal_preseq_hybcap).

2.6 | Exploration of capture bias

We assessed bias introduced by successive rounds of capture by first 
examining whether the amount of drop‐out and/or highly sequenced 
targets increased with rounds of capture. We extracted average 
depth of coverage per target region (from the bed file provided by 
Agilent with overlapping and book‐ended regions merged), per sample 
(n = 112) using the bedtools coverageBed option, excluding the X and 
Y chromosomes. Using multiple regression, we tested whether the 
average number of drop‐out regions (depth = 0) or highly sequenced 
regions (depth > 10) was significantly different between samples 
captured in one or two rounds, whilst controlling for sequencing ef-
fort and capture success by including the number of unique exome 
reads per sample. As above, we fit the models in r using the function 
lm, and ensured that assumptions were met. We again found some 
evidence of influential cases, but, as above, we found no difference 
in results when they were excluded and thus present the full data 
set. Full–null model comparisons were made using null models which 
included our control predictor, namely the number of unique exome 
reads. R‐code for this model implementation is also available on 
github (https://github.com/mtrw/white_etal_preseq_hybcap).

To explore what may be driving bias within samples we deter-
mined the GC content (using bedtoolsnuc applied to the panTro4 
reference) and the proportion of mismatches between the human 
(hg19, with which the bait sequences were designed) and chimpan-
zee (panTro4) reference genomes (using the axt alignment files pro-
vided by UCSC) for each target region (again excluding the X and Y 
chromosomes). We also extracted the GC content per read (using 
unix command line tools, sed and grep), and the length distribution 
of mapped reads (using picardtools) from bam files of a subset of 
samples (for computational efficiency and ease of visualization, 10 
captured in one round, 10 captured in two rounds; Pools 1 and 2) 
before and after capture.

2.7 | Data and prediction validation

To confirm that preseq produced reliable projections with our data 
set, we further sequenced 10 enriched libraries (Pool 1) using one 
additional lane of the llumina HiSeq 2500 (125‐bp read lengths, 
paired‐end). After sequence processing as above, we ran preseq on 
these data using the c_curve option, which uses down‐sampling to 
yield the number of unique on‐target reads for experiments using 
the same or less sequencing effort. After correcting the amount of 
required sequencing by the fraction of on‐target reads as above, we 

https://github.com/mtrw/white_etal_preseq_hybcap
https://github.com/mtrw/white_etal_preseq_hybcap
https://github.com/mtrw/white_etal_preseq_hybcap
https://github.com/mtrw/white_etal_preseq_hybcap
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compared these results with our predictions (based on shallow se-
quencing) of unique on‐target reads.

To further confirm the acquisition of biologically meaningful in-
formation using hybridization captured DNA data, we used the 10 
deeply sequenced samples to examine chimpanzee genetic vari-
ation in a subspecies context. We combined the exome data from 
these 10 samples, with high coverage (16–26×) chimpanzee whole 
genome shotgun data from eight individuals (Prado‐Martinez et al., 
2013) and moderate to high coverage (4–49×) chimpanzee exome 
data from six individuals (Hernandez‐Rodriguez et al., 2018). These 
additional data represent all four chimpanzee subspecies, including 
additional individuals from Kibale National Park. We used this com-
bined data set to extract genotype likelihoods using the program 
angsd (Korneliussen, Albrechtsen, & Nielsen, 2014), using the default 
settings of the GATK model, but requiring sites to be covered in 
all 24 samples. These genotype likelihoods were then used to per-
form principal components analysis (PCA) using pcangsd (Meisner & 
Albrechtsen, 2018).

3  | RESULTS

3.1 | Sample selection and estimation of subject 
DNA proportion

The 1,780 faecal extracts that were successfully genotyped rep-
resent 738 individuals from across Kibale National Park. Of these 
extracts, 316 (17.8%), representing 235 individuals, contain >2% sub-
ject DNA, and had total DNA concentrations >6 ng/μl (Supporting 
Information Figure S2). From this subset we chose the 110 unique 
individual extracts, in addition to the two tissue extracts, for exome 
sequencing.

We constructed libraries from each of the 112 extracts and 
shotgun sequenced an average of 1,223,582 reads per library 
(range = 751,451–2,036,321, Supporting Information Table S2) to 
examine how well our qPCR/Fragment Analyzer estimate reflected 
the true subject DNA proportion of our DNA libraries. We found 
only a moderate correlation between percentage subject DNA esti-
mated from qPCR/Fragment Analyzer and from shotgun sequencing 
(Pearson's r = 0.58, p < 0.001, Supporting Information Figure S3). 
The mean per cent of subject DNA in the faecal sample extracts as 
estimated by shotgun sequencing was 11.6% (range = 1.7%–37.4%), 
while the average estimated using qPCR/Fragment Analyzer was 
7.6% (range = 2%–58.6%). As we consider the estimate from shotgun 
sequencing to be more reliable, we used these values to calculate 
volumes for pooling of libraries prior to capture and hereafter refer 
to this estimate. No library blank control yielded any reads mapping 
to the chimpanzee genome after filtering (Supporting Information 
Table S2).

3.2 | Capture success

After performing one or two rounds of capture on our library pools, 
we sequenced on average 2,646,199 reads per captured library 

(range = 208,215–5,435,336, Supporting Information Table S2). The 
variation in the raw data acquired per library varied much less than 
was reported by Hernandez‐Rodriguez et al. (2018; range 0.2–5.5 
million reads here compared to 0.7–45.9). Unlike that observed in 
Hernandez‐Rodriguez et al., we did not observe a correlation be-
tween number of raw reads and precapture percentage subject 
DNA (Pearson's r = −0.03, p = 0.69, Supporting Information Figure 
S4), indicating a reduction in sequencing bias due to equimolar pool-
ing (as suggested by Hernandez‐Rodriguez et al., 2018) within our 
capture pools. Below we provide a description of shotgun sequenc-
ing and capture results before describing our model results in the 
next section.

For the shotgun‐sequenced faecal DNA libraries, the average 
percentage of reads mapping to the chimpanzee genome was 13.7% 
(range = 1.9%–45.8%, please note this differs from our calculation 
in the section above as it includes duplicated and unfiltered reads), 
the average percentage of on‐target reads (i.e., those mapping to the 
chimpanzee exome) was 0.4% (range = 0.08%–1.4%) and the dupli-
cation rates (i.e., the average number of times a unique fragment was 
sequenced) were low (mean = 1, range = 1–1.02). By comparison, 
after enrichment the average percentage of reads mapping to the 
chimpanzee genome was 88.3% (one round, range = 73.1%–97%) 
and 97.1% (two rounds, range = 95%–98.3%), the average percent-
age of on‐target reads was 67.1% (one round, range = 57%–74.3%) 
and 85.5% (two rounds range = 81.4%–87.2%), and the average du-
plication rates were 1.16 (one round, range = 1.06–1.35) and 1.61 
(two rounds, range = 1.32–2.26). The mapping data for individual 
samples can be found in Supporting Information Table S2.

This inverse relationship of mapping and duplication rates in li-
braries captured in one or two rounds resulted in a small difference 
in the percentage of unique exome reads: 55% (range = 44.4%–66%) 
for libraries captured in one round and 51.4% (range = 33.8%–63.1%) 
for libraries captured in two rounds. Thus, enrichment of exome 
reads in faecal extracts ranged from 46‐  to 538‐fold. Saturation 
curves predicted by preseq analysis showed that libraries with higher 
precapture percentage subject DNA (as estimated by shotgun se-
quencing) were generally more complex (i.e., had a steeper satura-
tion curve) after capture (Supporting Information Figure S5).

For the two tissue samples, 3% of reads were on‐target in shotgun‐
sequenced libraries and duplicate rates were again low (range = 1–1.02). 
After enrichment the average percentage of chimpanzee genome 
reads, average percentage of on‐target reads, duplication rates and 
percentage unique on‐target reads for the two singly captured libraries 
were 98.2% (SD = 0.6), 72.3% (SD = 2.2%), 1.05 (SD = 0.00) and 66.1% 
(SD = 2.2%), respectively, resulting in an average enrichment of 24‐fold 
(Supporting Information Table S2). Saturation curves for these two 
tissue samples revealed them to be more complex than all the faecal 
samples, as expected (Supporting Information Figure S5).

3.3 | Preferred number of rounds of capture

Overall, our predictors clearly influenced the number of unique 
on‐target reads estimated by preseq (full‐null model comparison: 
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F7,872 = 413.2, p < 0.001). More specifically, one round of capture led 
to a greater number of unique on‐target reads than two rounds of 
capture. While this general pattern held regardless of sequencing ef-
fort or starting percentage of subject DNA (across the ranges cov-
ered by our data), the increase in unique on‐target reads conferred by 
one round of capture compared to two was greater with increasing 
sequencing effort and (log‐scaled) starting percentage subject DNA 
(three‐way interaction, p = 0.00019, Supporting Information Table S3, 
Figure 1).

Our model predicts that, for samples with lower precapture per-
centage subject DNA (<2%–3%), the observed pattern would reverse 
and two rounds of capture would lead to a greater number of unique 
on‐target reads than one round (Supporting Information Figure S6). 
However, our comparative data do not extend to these low values of 
precapture percentage subject DNA, and therefore such predictions 
should be taken with caution.

3.4 | Capture bias

Rounds of capture influenced both the number of drop‐out re-
gions and the number of highly sequenced regions (full–null model 
comparisons: drop‐out: F−1,110 = 77.78, p < 0.001 and highly se-
quenced: F−1,110 = 193.09, p < 0.001). Performing two rounds 
of capture increased both the number of dropout regions and 
the number of highly sequenced regions (Figure 2, Supporting 
Information Tables S4 and S5). Visual inspection of depth of cov-
erage across the target regions (Supporting Information Figure S7) 

confirmed that the bias towards or away from certain regions was 
largely consistent across captured samples from both faecal and 
tissue samples, and was not observed in whole genome shotgun 
sequencing data (Prado‐Martinez et al., 2013). We observed an 
increase in average fragment length from 155.8 bp (SD = 63 bp) 
across shotgun‐sequenced samples to 194 bp (SD = 77.2 bp) after 
one round of capture and 202.5 bp (SD = 74.3 bp) after two rounds 
of capture (Figure 3a). We similarly observed a change in the distri-
bution of read GC content, with average percentage GC increasing 
from 46% (SD = 10.4%) in shotgun sequenced samples, to 52.9% 
(SD = 10.4%) after one round of capture and 56.4% (SD = 9.1%) 
after two rounds (Figure 3b). This pattern of GC bias was also ob-
served across target regions, with average depth of coverage high-
est in regions with 55%–65% GC (Supporting Information Figure 
S8). Finally, we found no pattern of decreasing average depth of 
coverage with increasing divergence between the chimpanzee 
and human reference regardless of round of capture (Supporting 
Information Figure S9).

3.5 | Data validation

The average number of reads produced for the 10 libraries 
(Pool 1) that were subject to deep sequencing was 14,755,628 
(range = 6,341,251–18,622,980), resulting in an average depth of 
coverage of our target region of 17.3× per library (range = 7.6–
24.5×). Comparison of the predicted and observed satura-
tion curves produced by preseq shows a good match, although 

F I G U R E  1  The effect of rounds of capture, precapture percentage subject DNA and sequencing effort on the number of unique exome 
reads (as predicted by preseq). The plots show the predicted data and model at increasing sequencing effort (at 5, 15 and 20 million reads 
sequenced from left to right). Each point represents a captured library, the fitted model is shown as solid lines and 95% model confidence 
intervals are shown as broken lines [Colour figure can be viewed at wileyonlinelibrary.com]
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three libraries (N17311, N21602, N21608) had 1%–2% fewer 
unique reads on‐target compared to that predicted (Supporting 
Information Figure S10). Finally, our PCA shows that, as expected, 

the 10 samples from this study cluster with other eastern chim-
panzee samples – specifically, with samples originating from Kibale 
National Park (Figure 4).

F I G U R E  2  The effect of rounds of capture on the number of (a) drop‐out target regions (depth = 0) and (b) highly sequenced regions 
(depth > 10). Each point represents a captured library, the fitted model is shown as solid lines and 95% model confidence intervals are shown 
as broken lines [Colour figure can be viewed at wileyonlinelibrary.com]

× + × + × + × +

(a) (b)

× + × + × + × +

F I G U R E  3  Exploration of capture bias in samples from Pools 1 and 2. Density plots of (a) percentage of mapped reads of a given insert 
size and (b) percentage of all reads with given GC proportion. Lines are coloured by the rounds of capture: none/shotgun in green, one round 
in red and two rounds in blue [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b)
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3.6 | Budget details

If we aimed to produce 15 million reads per library, our model pre-
dicts that we could achieve 5,297,949 unique on‐target reads (95% 
confidence interval: 5,196,338–5,399,560) for samples with 11.6% 
subject DNA (the average of our 110 chosen faecal extracts) using 
a single round of exome capture. Assuming the high correlation be-
tween number of unique exome reads and average depth of cover-
age observed in our data (r2 = 0.97, Supporting Information Figure 
S11) continues when sequencing effort is higher, we can translate 
this predicted number of unique on‐target reads to an average depth 
of coverage of ~13.9×. We consider this depth of coverage to be 
adequate for most downstream population genetic analyses and 
therefore provide a detailed budget (Supporting Information Table 
S6) based on the above conditions (i.e., a single round of capture 
and sequencing effort that is equal to producing 15 million reads 
per library). Under these conditions the cost per sample for library 
preparation, hybridization capture and sequencing is ~€230 at the 
time of writing, most of which is accounted for by sequencing costs 
(~€194 per library; based on multiplexing ~13 libraries per lane of 
an Illumina 2500, version 3 chemistry). Including a second round of 
capture simply doubles the cost of the capture step and brings the 
total cost to ~€250. The cost of qPCR/Fragment Analyzer screening 
was roughly €2 per extract, while the cost of sample collection, DNA 
extraction and microsatellite genotyping will vary between labora-
tories and projects. Thus, these additional costs should be consid-
ered on a per‐project basis.

In Figure 5 we generalize sequencing costs to provide a guide for 
researchers wishing to undertake their own hybridization capture 
study of noninvasive samples. Figure 5 shows the predicted num-
ber of unique on‐target reads for various precapture subject DNA 
contents at increasing sequencing effort and relates this effort to 
sequencing cost. Our cost estimates are based on the use of one 
lane of an Illumina 2500 (version 3 chemistry, which produces ~200 
million reads) and relies on researchers multiplexing to the highest 

degree possible. For example, to produce 10 million reads per library 
at a cost of €125 each, 20 libraries must be multiplexed on a single 
lane. These predictions are based on the specific protocol described 
here, and we discuss below how variations in design, which other 
studies may wish to implement, may impact capture efficiency and 
thus cost.

We note that our budget is based on the cost of performing mo-
lecular analysis in Europe, and that part of the cost of sample collec-
tion involves shipping samples out of range‐countries, which may 
lack the infrastructure to conduct such experiments. As researchers, 
we should work towards a situation in which such analyses can be 
performed in situ, making such extractive collection practices unnec-
essary. Such contributions could include support for local infrastruc-
ture, or providing mentorship to local students. For example, the 
Ngogo Chimpanzee Project supports local schools in Uganda and 
provides scholarships for Ugandan masters students to conduct re-
search at Kibale National Park (http://ngogochimpanzeeproject.org/
education/). Such efforts are important to create more equitable, 
sustainable, ethical and cost‐effective research practices.

4  | DISCUSSION

In this study we successfully used hybridization capture to enrich 
110 libraries derived from faecal DNA extracts for exome DNA. We 
used these data to examine the appropriate number of rounds of 
capture when using a range of concentrations of subject DNA rela-
tive to total DNA, explore bias introduced by capture, and provide 
a roadmap for future hybridization capture studies of noninvasive 
samples.

4.1 | Rounds of capture

Our analysis shows that one round of capture is preferable to two 
for samples with greater than ~2%–3% subject DNA. For lower 

F I G U R E  4  Principal components 
analysis showing the genetic population 
structure of our 10 study samples 
(squares), and 14 samples from other 
studies (circles and triangles). Samples 
originating from Kibale National Park, 
Uganda, are circled with a broken 
line [Colour figure can be viewed at 
wileyonlinelibrary.com]
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precapture subject DNA proportions we predict that two rounds of 
capture are optimal, although further experimental work is needed 
to confirm this. It is possible that the correlation of capture success 
with precapture subject DNA proportions may become nonlinear 
at lower values due to, for example, increased rates of misbinding 
between baits and library DNA, leading to deviation from our pre-
dictions. Although a number of studies focused on ancient DNA 
provide some evidence that the correlation of capture success with 
precapture subject DNA proportions holds for lower quality samples 
(Ávila‐Arcos et al., 2015; Carpenter et al., 2013; Cruz‐Dávalos et al., 
2017, 2018), these studies lack the sample sizes needed for statisti-
cal tests of this hypothesis. Thus, further experimental work on sam-
ples with low proportions of subject DNA are necessary.

Our results appear to contrast with a recent study that also fo-
cused on exome hybridization capture using DNA from chimpanzee 
faecal samples. Hernandez‐Rodriguez et al. (2018) found two rounds 
of capture to be more efficient for samples with a range of subject 
DNA from 0.16% to 24.6%. However, more than half of the samples 
in that study (10–12 of 18) were below our ~2%–3% cut‐off value, 
and the interaction between subject DNA content and rounds of 
capture was not accounted for in the Hernandez‐Rodriguez et al. 
(2018) model. Thus, their recommendation does not contradict the 
results presented here, but probably reflects the quality distribution 
of their sample set, with the majority of their samples benefiting 
from two rounds of capture.

4.2 | Bias introduced by capture

Our analysis of capture bias showed that samples subjected to two 
rounds of capture were more likely to have more highly sequenced 
target regions, but that this comes at the cost of drop‐out at other 
regions. This result, and our visual inspection of depth of coverage 
across the target space and across samples, shows that capture is 

indeed biasing our sequencing results towards some target regions 
and away from others, and that this effect is exacerbated in librar-
ies subject to two rounds of capture. This means that even when 
the number of unique reads mapping to the exome is equal across 
samples, samples captured in one round will have more uniform cov-
erage across the target space compared to samples captured twice. 
This result has implications for the preferred number of rounds of 
capture. Our model of rounds of capture is based on maximizing 
the number of unique exome reads, regardless of the distribution 
of reads across the target space. Thus, although we predict that two 
rounds of capture will maximize the unique exome reads for samples 
with less than 2%–3% subject DNA, researchers dealing with such 
samples must also consider the increase in bias, and effective de-
crease in total target space, that two rounds will confer.

We explored three possible drivers of capture bias: GC content, 
fragment length, and divergence between bait sequence and target 
DNA sequence. We found that the distribution of read GC content 
narrowed with successive rounds of capture and that target regions 
with GC proportions in the range of 55%–65% had higher average 
depth of coverage. This indicates that GC content is a probable driver 
of capture bias, as has been shown previously (Ávila‐Arcos et al., 
2015; Cruz‐Dávalos et al., 2017). Conversely, we found no decrease 
in average depth of coverage across target regions with increasing 
divergence between the chimpanzee and human genome. This is in 
agreement with previous work on chimpanzee exome capture using 
human baits (Jin et al., 2012; Vallender, 2011), and suggests that the 
overall divergence between the chimpanzee target DNA and human 
bait sequences is not large enough to interfere with capture success, 
with the large majority of regions having less than 2% mismatches. 
Also in agreement with previous studies (Ávila‐Arcos et al., 2015; 
Carpenter et al., 2013; Enk et al., 2014), we observed an increase in 
average fragment length in captured libraries compared to shotgun 
data. Ávila‐Arcos et al. (2015) hypothesized that fragment length 

F I G U R E  5  Predicted number of exome 
reads, for samples of various subject DNA 
percentages, at increasing sequencing 
effort/cost using a single round of 
capture. Broken grey lines represent the 
estimated number of reads needed to 
achieve 5×, 10× and 20× (from bottom 
to top) average depth of coverage of our 
target space (the exome). Sequencing cost 
per library is calculated based on the use 
of one flow cell of an Illumina HiSeq 2500 
(version 3 chemistry) [Colour figure can be 
viewed at wileyonlinelibrary.com]
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bias may be a result of the distribution of bait lengths, with longer 
baits biasing against smaller target molecules. Unfortunately, we 
were unable to test this hypothesis, as well as a number of other 
possible drivers of bias (e.g., tiling density, bait sequence content), 
due to our use of commercial baits, for which we have no informa-
tion on bait design. Further work on capture bias should use custom 
bait sets to fully explore the drivers of capture bias, and such work 
could then be used to improve bait design and reduce bias in capture 
studies.

4.3 | Roadmap for hybridization 
capture of noninvasive samples

We were able to incorporate sequencing effort into our analysis 
of rounds of capture by using predictions from the program preseq, 
which we validated by sequencing 10 libraries to higher depth to 
show a good match between predictions and observations. This ap-
proach allowed us to relate sample quality (as measured by subject 
DNA content) to sequencing costs and/or probable data yields, to 
assist in project planning of future research. For example, achieving 
an average depth of 5× for the chimpanzee exome, from samples 
with 2% subject DNA, requires roughly 10 million reads per sam-
ple, which translates to a cost of €125 each (plus the cost of library 
preparation and capture, Supporting Information Table S6).

Our results can be used as a guide to the feasibility of hybrid-
ization capture wherever researchers possess a reasonable under-
standing of the depth of coverage needed for the study at hand, 
and awareness about the quality of available samples. The neces-
sary depth of coverage will depend on the research question and 
desired analytical framework of a particular study. For example, 
although single nucleotide variant calling is usually only recom-
mended for samples with depths of coverage greater than 15–20× 
(Meynert, Ansari, FitzPatrick, & Taylor, 2014; Sims, Sudbery, Ilott, 
Heger, & Ponting, 2014), an increasing number of population genetic 
software can accommodate low to medium coverage (4–15×) data by 
using, for example, genotype likelihoods or haploid calling methods 
(Korneliussen & Moltke, 2015; Therkildsen & Palumbi, 2017; Vieira, 
Albrechtsen, & Nielsen, 2016; Wall et al., 2016).

With regard to sample quality, we highly recommend sampling 
extensively and prescreening extracts. Our results show that sam-
ples with <2% subject DNA would only yield small amounts of data 
using the protocols presented here, even after switching to two 
rounds of capture (see below for a discussion of other possible pro-
tocol modifications). The proportion of our sample set that met our 
criteria (2% subject DNA and 6 ng/μl ng total DNA concentration) 
was 17%, but this is likely to vary widely across species, collection 
environments and collection methods. Pilot studies that character-
ize the quality distribution of sample sets can inform researchers of 
the total number of samples that need to be collected to reach a 
desired number of usable samples. Generally, we expect the number 
of usable samples to scale proportionally with the total number of 
samples collected, and thus sampling as extensively as possible is 
recommended.

Screening extracts not only allows selection of samples most 
likely to yield usable data, but is also imperative for equitable pool-
ing prior to capture to reduce sequencing bias. However, our qPCR/
Fragment Analyzer estimate of subject DNA content was only mod-
erately correlated with the estimate derived from shotgun sequenc-
ing. This could be due to differences in sensitivity to fragment length 
(our qPCR assay can only assess fragments larger than 81 bp, while 
we can map sequenced fragments as short as 35 bp), compounded by 
biases toward smaller fragments during library preparation (Dabney 
& Meyer, 2012; Enk, Rouillard, & Poinar, 2013). Unless more accurate 
screening assays are available or can be developed for the study spe-
cies, we recommend shallow shotgun sequencing prior to pooling to 
re‐estimate the percentage of subject DNA in each library.

4.4 | Caveats and other considerations

The generalizability of our results does of course have limits. A num-
ber of variables that we did not test can meaningfully impact the 
efficiency of hybridization‐enrichment, and these factors should be 
considered when predicting yields and making cost estimates. First, 
the size of the target space is directly related to the number of reads 
required to reach a given depth of coverage. Our target space was 
~60 Mb, and smaller or larger spaces will proportionally affect the 
cost of bait synthesis and sequencing. Second, studies on capture 
efficiency across scales of divergence indicate that increased evo-
lutionary distance between the species for which the baits were 
designed and the target species will decrease capture efficiency, par-
ticularly for divergence estimates exceeding 20 million years (Bragg 
et al., 2016; Jin et al., 2012; Portik et al., 2016). This is especially 
important for species that do not yet have a high‐quality reference 
genome. Third, because commercial baits are generally designed for 
high‐quality DNA, these bait sets may not be as efficient for DNA 
from noninvasive samples, and redesign with increased bait tiling 
density (i.e., the average number of unique bait molecules that cover 
each position of the target sequence) may improve capture success 
(Bodi et al., 2013; Clark et al., 2011). However, such drawbacks of 
pre‐designed, “off‐the‐shelf” options should be weighed against the 
fact that custom‐designed bait sets are generally (depending on tar-
get space and tiling density) more expensive.

Other modifications to our protocol may also increase capture 
efficiency and accommodate lower quality samples. For example, 
increasing the amount of DNA per library in a capture reaction by 
lowering the number of pooled libraries (and keeping the total input 
amount the same) should increase the number of unique fragments 
per sample available for capture and thus increase the post‐capture 
library complexity (McCartney‐Melstad, Mount, & Shaffer, 2016). 
Similarly, preparing multiple libraries and/or conducting multiple 
captures per sample may also prove more cost‐efficient than deep 
sequencing of a singly captured library, particularly for very low‐
quality samples (Hernandez‐Rodriguez et al., 2018). These modifi-
cations unavoidably increase the cost of library preparation, capture 
and sequencing per sample, but may allow researchers to obtain use-
able data for samples with <2% subject DNA.
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A final consideration for studies in which faecal samples are col-
lected from unobserved animals is the possible inadvertent sampling 
of nontarget conspecific species (Arandjelovic et al., 2010), and com-
plications arising from the presence of diet‐related DNA (Hofreiter, 
Kreuz, Eriksson, Schubert, & Hohmann, 2010). Distinguishing differ-
ent species’ remains can be achieved through mitochondrial or mi-
crosatellite DNA analysis. Microsatellite genotyping is also necessary 
to identify unique individuals and thus should be considered a nec-
essary part of the screening process. For example, our samples were 
first subjected to analysis at 15 microsatellite loci and categorized as 
individuals in the context of a long‐running project (Granjon et al., 
2017; Langergraber, Mitani, & Vigilant, 2007; Langergraber, Watts, 
Vigilant, & Mitani, 2017). We could therefore be confident that our 
putative chimpanzee samples were indeed from chimpanzees. A 
more insidious issue is the concurrent presence of diet‐related DNA 
from closely related species. For example, chimpanzees are known to 
hunt and eat various species of sympatric primates (Watts & Mitani, 
2002), which could result in other primate DNA being co‐captured 
during hybridization. This has the potential to impact downstream 
analyses, especially at conserved genetic regions. Therefore, the de-
velopment of bioinformatic tools to identify contaminated extracts 
from shallow shotgun data, or remove or account for contaminant 
reads in silico, as is possible for studies of ancient DNA (Racimo, 
Renaud, & Slatkin, 2016; Renaud, Slon, Duggan, & Kelso, 2015; 
Skoglund et al., 2014), should be considered a high priority.

5  | CONCLUSION

Our study adds to a growing body of literature showing that large‐
scale genomic studies are feasible for noninvasive samples through 
hybridization capture, and provides further data to help optimize 
such research. To our knowledge this study represents the first 
exploration of the appropriate rounds of capture with respect to 
sample quality, finding that one round of capture is more efficient 
for samples with more than ~2%–3% subject DNA. Additionally, we 
have confirmed that successive rounds of capture introduce biases 
to sequencing data, with fewer rounds of capture ensuring more 
even coverage across the target space. We have presented detailed 
protocols, budgets and model output to act as a guide for research-
ers wishing to implement hybridization capture of noninvasive sam-
ples and show that, with an understanding of sample availability, 
quality and necessary data yields, the feasibility of such studies can 
be easily assessed.
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