Thermoluminescence dates for the Middle Palaeolithic site of Chez-Pinaud Jonzac (France)

Daniel Richtera,b, Jean-Jacques Hublin a, Jacques Jaubert c, Shannon P. McPherrona, Marie Soressia,d, Jean-Pierre Texierc

a Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
b Lehrstuhl Geomorphologie, University of Bayreuth, Universitätstrasse 30, 95447 Bayreuth, Germany
c University of Bordeaux1, PACEA UMR 5199 (CNRS UB1 MCC), Bordeaux, France
d INRAP, 45590 St Cyr-en-Val, France

Abstract

Thermoluminescence dating of heated flint artefacts from the Middle Palaeolithic sequence of Chez-Pinaud Jonzac (France) places an assemblage of Quina type Mousterian into MIS 4, while the overlying assemblage of Denticulate Mousterian which is followed by two layers with Mousterian of Acheulean Tradition are all assigned to MIS 3. TL dating is used to verify the mixed nature of deposits from which diagnostic Middle as well as Upper Palaeolithic tools were recovered. The TL ages are significantly different for samples from this layer and broadly agree with the archaeological attributions. While the study is generally limited by the low number of heated samples available, a correlation with a generalized chronostratigraphic sequence is possible by including proxy data from the faunal remains associated with the lithic assemblages in question. The Quina Mousterian in southwestern France, therefore, can be placed by chronometric dating methods in MIS 4 to MIS 3.

1. Introduction

The site of Chez Pinaud Jonzac (hereafter Jonzac) is a collapsed rock shelter situated in the Seugne River valley in the Charente-Maritime department of southwest France (Fig. 1). The site was first recognized by the geologist Marchais in 1997 and subsequently excavated by Airvaux between 1998 and 2003 (Airvaux et al., 2004; Airvaux and Soressi, 2005). This work established that the site had a deep sequence of Late Middle Palaeolithic industries capped by a thick deposit of mostly sterile sediments that include some dispersed Early Upper Palaeolithic lithics. An effort to date these deposits by AMS and TL was unsuccessful (Airvaux, 2004), thus from 2004 to 2007 a new series of excavations was conducted at the site (Jaubert et al., 2008, Jaubert et al., 2010) in part to re-attempt a dating of the sequence (Britton et al., 2011; Niven et al., 2012; Richards et al., 2008). This dating effort includes AMS radiocarbon dating of bones from the upper Middle Palaeolithic levels (Jaubert et al., 2008), OSL (work in process) and Thermoluminescence (TL) dating of heated flints.

The results of the latter are reported here and the chronometric data is placed in a chronostratigraphical framework, with Marine Isotope Stages (MIS) as a general reference. However, direct correlation of terrestrial and marine sequences can be problematic (e.g. Sanchez Goni et al., 2000), sometimes delayed (e.g. Sier et al., 2011) and the terrestrial record appears to be more complex in some instances (e.g. Guiter et al., 2003), while certainly being comparable on a larger scale (e.g. Orombelli et al., 2010). However, studies of proxy data from close by sites in Western Europe, like lake Les Echets (e.g. Wohlfarth et al., 2008) and a speleothem from Villars Cave (e.g. Genty et al., 2010) indicate good correlation between marine and terrestrial proxies and reference is therefore made to MIS here, in order to attribute more precise age estimates through the combination of chronometric ages with proxy data available. TL ages are traditionally provided with an uncertainty of 68% (1-s) and need to double (2-s) in order to have sufficient confidence (95%) that the true age actually lies within the probability range given. It is only within 2-s that any chronometric age should be interpreted when it is compared to other data, whether chronometric or proxy (e.g. Richter, 2007). The 2-s age ranges therefore often allow the nominal attribution to more than one MIS
or substage, while proxy data might provide a more precise attribution within the chronometric age range and thus the most parsimonious age.

2. Stratigraphy, lithics and fauna of the Middle Palaeolithic sequence of Chez-Pinaud Jonzac

The site is situated against a low limestone cliff face in the broad valley of the Seugne River, which is tributary to the Charente River. Starting in the 19th century, the limestone at this site was exploited and a road was cut through the gently sloping valley deposits to gain access to the cliff face. This road exposed a section which was recognized in 1997 and then excavated by Jean Airvaux (2004). These and the subsequent excavations mainly consisted of a rectification of the steeply sloping sediments that form the road cut. The work resulted in one east and one west section, separated by the road. Excavations of both projects have mainly concentrated on the west section, though some testing of the sequence on the east section was also conducted.

Airvaux recognized 24 layers defined primarily on the basis of archaeological criteria (Fig. 2). One feature of the sequence is the presence of sterile sediments separating archaeological find horizons. In general, Airvaux used even numbers to denominate layers with archaeological finds and odd numbers to denote the intervening sterile layers. The subsequent excavations followed Airvaux’s system with only the addition of some sublevels, particularly in the thicker archaeological deposits at the base of the sequence. Thus, the numeric portion of the layer names reported here is strictly correlated with those already reported by Airvaux (2004) and Airvaux and Soressi (2005). However, a designation was added to each layer indicating the section of the site in which they were excavated (E = East, SW = South-West, and W = West) as well as the prefix US (unité stratigraphique). Even though the west and southwest sections were stratigraphically connected during the course of the excavation, the SW designation is retained here in order to provide continuity with previous publications (Fig. 3). However, the east and west sections are not connected stratigraphically and while the two sequences are overall similar, individual layer numbers are not necessarily strictly correlated.

The archaeological sequence is contained in deposits that have been divided lithostratigraphically into five geological units (Texier in Jaubert et al., 2008, p. 211). The lowest most layers (24–9/unit 5)
are located in a deposit of yellow–brown, clayey sands with no evidence of soil formation and with little evidence of stratification except for some more sandy lenses localized against the cliff face. The sediments of this unit were likely deposited by water in combination with solifluction. However, these processes did not substantially alter the archaeological deposits because Layer W-US22 contained several instances of faunal elements in anatomical connection (Niven et al., 2012), the artefacts and bone were not strongly re-aligned (Jaubert et al., 2008), and a concentrated pile of lithic debris with refits was found in the layer. Layer SW-US8 to SW-US6 (unit 4) are dark brown sandy clay units, characterized by rounded limestone blocks/gravel and sometimes quartz gravels. Here the blocks but also the artefacts are more strongly oriented with the slope of the deposit than in the underlying layers. In addition to the more poorly preserved fauna, the lithics also show higher rates of edge damage. The depositional environment is also one of water and solifluction; however, in this case, particularly in Layers SW-US7 and SW-US6, the effects on the archaeology are more pronounced than in the underlying unit. In these later levels it is clear that there has been some downslope displacement of the artefacts of an unknown distance. Units 3–1 are archaeologically sterile or contain only few artefacts.

The Jonzac excavations have not reached the underlying bedrock, but coring indicates several more metres of sediment, including alluvial sediments above the substrate. The base of the excavated deposit is characterized first by a thick (~1.5 m), very well preserved, bone bed deposit (Layers 24–22) associated with Quina Mousterian, followed by a series of thin, archaeological layers (Layers 20–9) with high bone densities and Quina type industries separate from one another by thicker sterile deposits. For Layer W-US22 a surface of just under 8 m² was excavated to a depth of 30 cm, with some limited excavation of Layers 20–9. With Layer
SW-US8 the sequence changes abruptly. This layer is extremely rich in lithics with a poorly preserved fauna. The lithics are typologically a Denticulate Mousterian on a Levallois technology. The reported presence of a Chatelperronian industry in Layer 8 (Airvaux and Leveque, 2004) cannot be confirmed for the more recent sample from the sequence. The overlying deposit containing similar archaeological material is subdivided into two layers (SW-US7 and SW-US6) based primarily on the presence (in Layer SW-US6) of limestone blocks that represent the collapse and retreat of the shelter. Bone preservation continues to be poor in these levels. The lithic technology changes to Mousterian of Acheulian Tradition (MTA) with characteristic bifaces, notched tools, and backed knives and with a technology of blank production that includes some Levallois and some discoidal. Overlying the MTA are deposits with virtually no bone preservation and very low density, highly dispersed lithics. These lithics, where identifiable, appear to be Aurignacian (Jaubert et al., 2008).

The rich and well preserved fauna of the Quina layers (Layers 24—9) is dominated by reindeer (Rangifer tarandus 73—87%), with horse and large boids, as well as rhino and hare being present, pointing more towards a cold, dry and open environment (Niven et al., 2012). The bone surface preservation is good with little evidence of carnivore impact, and a substantial number of bones show human impact (marrow exploitation patterns) and cutmarks (10—27%). The fauna from the MTA and Denticulate Levallois layers (SW-US06 to SW-US08) is dominated by large boids (Bos/Bison), with reindeer and horse (Equus sp.) being abundant and some giant and red deer, as well as lion and bear. Little evidence of carnivore impact has to be noted and cutmark frequency is 3% in these faunal assemblages, which are indicating temperate and moist, but more closed habitats. Such data is consistent with the climate change from MIS 4 to MIS 3, however, it could also represent changes in subsistence strategies and other proxy data are required.

3. Chronostratigraphic position of the Jonzac sequence

Whether particular types of the traditionally recognized Mousterian ‘facies’ (e.g. MTA, Denticulate Mousterian, etc.) represent discrete time intervals (Mellars, 1965, 1969, 1996), or whether some or all of the Mousterian facies overlap in time, has been debated for decades. A recent summary of the available dates (Guibert et al., 2008) shows that at least the classical MTA, Quina and Denticulate type Mousterian chronologically overlap, which is supported in other studies and for other facies (Richter et al., 2012). However, stratigraphically, as is the case at Jonzac, at least the MTA typically occurs late in Middle Palaeolithic sequences and is overlaying the Quina Mousterian (Jaubert et al., 2011; Mellars, 1969).

Based on the small set of available chronometric data, Guibert et al. (2008) suggest an age range of approximately 54—39 ka (MIS 3 to the end of the Middle Palaeolithic) for the Quina Mousterian, fully overlapping with the MTA. A survey of fauna associated with the Quina Mousterian (Delpech, 1996; Discamps et al., 2011) shows it to be always reindeer dominated in the Charente and Perigord regions, as is the case at Jonzac, which is just southwest of the Charente. Discamps et al. (2011) suggest that the Quina might start around Heinrich event 6 or late MIS 4 and continue only until early MIS 3. Currently the oldest chronometric date for an assemblage containing bifaces and generally attributed to the MTA is the weighted mean age of 64.6 ± 3.1 ka for burnt sediment from a combustion feature in Layer C of the Grotte XVI (Guibert et al., 1999), but most of the dates appear to cluster between 55 and 40 ka at the end of the Middle Palaeolithic in the first half of MIS 3. Recently obtained 14C-AMS and TL dates for the MTA portion of Peche de l’Aze IV (McPherron et al., 2012; Richter et al., 2012) also fall within this time period.

Three bones from the Jonzac sequence have been AMS radiocarbon dated (Jaubert et al., 2008). The two radiocarbon dates for the Middle Palaeolithic MTA Layers SW-US6 and SW-US7 are at the upper limit of the age range usually given for the MTA of 70—39 ka (Guibert et al., 2008; Soressi et al., 2007) and place the MTA of Jonzac in the same time frame as e.g. the TL-date of 36.3 ± 2.7 ka for the Châtelperronian of nearby Saint-Césaire (Mercier et al., 1991) and of 37.18 ± 0.42 ka for the Proto-Aurignacian of Isturitz (Smidt et al., 2010). However, we consider these ages as preliminary, because the collagen yields were low, and a new set of AMS radiocarbon ages for the upper part of the Jonzac sequence is in progress. The preliminary TL ages for the sequence as reported by Jaubert et al. (2008) are superseded by the results presented here.

4. Thermoluminescence dating of heated flint from Jonzac

Thermoluminescence (TL) dating of heated flint artefacts determines the timing of the last heating of rock material, and thus the time elapsed since the prehistoric human activity of lighting a fire. It is one of the few instances where chronometric dating can provide an age estimate of a prehistoric activity directly (Richter, 2007) and the association of the sample and the event dated is secured (Dean, 1978).

The method of TL dating of heated flint artefacts is based on the accumulation of metastable charges (palaeodose) in the crystal lattice by ionizing radiation since the last heating of the rock (Aitken, 1985). Such charges in the crystal lattice of minerals are caused by the ionizing radiation due to the decay of radioactive elements from the surrounding sediment (external dose) and the sample itself (internal dose), as well as secondary cosmic rays (external dose). This omnipresent ionization causes a radiation dose (palaeodose or P) to accumulate in the crystal in the form of electrons in excited states. For dating application only electrons in metastable states are targeted, which are resident over periods of time much longer (approximately 50 Ma after Wintle and Aitken, 1977) than the anticipated age. The ratio of accumulated dose (palaeodose) to the sum of a series of dose rates (external and internal) provides the age of the last heating. Detailed descriptions of the principles of luminescence dating methods can be found elsewhere (Aitken, 1985, 1998; Botter-Jensen et al., 2003; Wagner, 1998) and a general account of TL dating of lithics is given in Richter (2007).

4.1. Methods

Artefacts showing macroscopic traces of heating, like potlids, craquelation, crenation, reddening (Richter, 2007), were submitted for TL-analysis. The majority is not suited for TL dating because temperatures achieved were too low to allow TL dating. Only samples passing the heating plateau test (after Aitken, 1985) which provides an indication for the complete zeroing, and thus fulfilling a basic assumption, were analysed (see Supplementary material for details).

Because the UV-blue luminescence signal of the samples from Jonzac is well within the linear dose range, the palaeodose on the 90—160 μm fractions of the crushed flint material (after the removal of the outer 2 mm) was obtained by a multi-aliquot additive-regeneration (MAAR) protocol (Aitken, 1985). The integration range of all luminescence signals analysed was defined by the range of overlap of the temperature ranges of the heating plateau with the equivalent dose plateau in order to achieve the most accurate and precise results. A more detailed description of the procedures used is given in the electronic supplement.
4.2. Dosimetry

Of major concern in dosimetric dating is the assumption of the constancy of the dose rates over burial time and its spatial homogeneity. The former is certainly valid for the internal dose rate of the heated flints because only unaltered parts are used (i.e. not patinated). Only samples lacking macroscopic grain size variation, veins, etc., were selected, in order to minimize inhomogeneity effects (potentially leading to spatial differences in dose rates), which are usually related to macroscopically visible difference (e.g. Schmidt et al., 2012). The assumption of the constancy of the external dose rates (i.e. external γ only, in the case of flints) has to be verified by HpGe γ-spectrometry. But, only the present state can be determined and past changes (i.e. disequilibrium in the decay chains of Th and U) are difficult to detect and to model, especially as they could have occurred repeatedly. Because of size limitations only the smaller sediment particles can be analysed in the laboratory by HpGe γ-spectrometry (i.e. rocks and larger artefacts are not included, but bone fragments were). The results for γ-dose rates are therefore not necessarily representative if the sediment contains abundant rocks and artefacts (‘lumpy’ after Schwarcz, 1994). HpGe γ-spectrometry (50% SiO$_2$ + 50% CaCO$_3$ matrix) was therefore used only for the verification of the constancy of the external γ-dose rate. But, there is significant evidence for some of these sediments, which consist mainly of rock debris from cliff erosion with clay. External γ-dose rates are obviously not spatially homogeneous in such cases. Therefore, the external γ-dosimetry has to be either reconstructed and modelled (e.g. Guerin, 2012; Guibert et al., 1998), or measured with dosemeters which are small enough to be placed in positions/geometries similar to the ones occupied by the sample. Here, the external γ-dose rates used for age calculations are based on α-Al$_2$O$_3$:C-dosimeter measurements, employing the method described by Richter et al. (2010). The dosemeters were inserted in as many as possible locations into the sediment profiles for the duration of one year and were therefore exposed to the present daily seasonal changes in sediment moisture. The present day moisture was assumed to best represent the average past conditions, especially as it would be difficult to calculate or model any past moisture contents. Because dosemeters were placed after every season of excavation, many different geometries of these sediments could be measured. From the dosimetric point of view the sediments are considered very ‘lumpy’ (Schwarcz, 1994) with varying degrees of rubble and boulders from the limestone cliff, which are incorporated in the clayey sediments. The lithic artefacts sampled for dating originate from a variety of rocks, and artefacts (Schwarcz, 1994) with varying degrees of rubble and boulders from the limestone cliff, which are incorporated in the clayey sediments.

Table 1

<table>
<thead>
<tr>
<th>EVA-LUM number</th>
<th>Area/layer</th>
<th>Square</th>
<th>Inv.-no.</th>
<th>x (m)</th>
<th>y (m)</th>
<th>z (m)</th>
<th>U (ppm)</th>
<th>Th (ppm)</th>
<th>K (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>06/35</td>
<td>E-US05.2</td>
<td>L14</td>
<td>31</td>
<td>1012.047</td>
<td>1086.934</td>
<td>-4.148</td>
<td>1.15 ± 0.07</td>
<td>0.64 ± 0.04</td>
<td>1020 ± 286</td>
</tr>
<tr>
<td>05/20</td>
<td>E-US05.2</td>
<td>L16</td>
<td>12</td>
<td>1012.219</td>
<td>1084.715</td>
<td>-4.393</td>
<td>0.50 ± 0.05</td>
<td>0.41 ± 0.04</td>
<td>702 ± 288</td>
</tr>
<tr>
<td>06/30</td>
<td>E-US05.2</td>
<td>L16</td>
<td>6</td>
<td>1012.613</td>
<td>1084.957</td>
<td>-4.305</td>
<td>0.40 ± 0.05</td>
<td>0.54 ± 0.04</td>
<td>303 ± 24</td>
</tr>
<tr>
<td>07/40</td>
<td>E-US05.2</td>
<td>K13</td>
<td>8</td>
<td>1011.963</td>
<td>1087.617</td>
<td>-4.087</td>
<td>0.55 ± 0.07</td>
<td>1.99 ± 0.08</td>
<td>655 ± 524</td>
</tr>
<tr>
<td>06/36</td>
<td>E-US05.2</td>
<td>L16</td>
<td>38</td>
<td>1012.454</td>
<td>1084.347</td>
<td>-4.504</td>
<td>0.38 ± 0.04</td>
<td>0.46 ± 0.10</td>
<td>559 ± 15</td>
</tr>
<tr>
<td>06/37</td>
<td>E-US06.1</td>
<td>L14</td>
<td>112</td>
<td>1012.622</td>
<td>1086.114</td>
<td>-4.588</td>
<td>0.73 ± 0.04</td>
<td>0.18 ± 0.03</td>
<td>286 ± 8</td>
</tr>
<tr>
<td>05/21</td>
<td>SW-US06.1</td>
<td>D16</td>
<td>218</td>
<td>1004.512</td>
<td>1084.562</td>
<td>-4.867</td>
<td>0.60 ± 0.10</td>
<td>0.32 ± 0.07</td>
<td>3019 ± 1054</td>
</tr>
<tr>
<td>07/41</td>
<td>SW-US06.1</td>
<td>D19</td>
<td>240</td>
<td>1004.795</td>
<td>1081.295</td>
<td>-5.524</td>
<td>0.39 ± 0.05</td>
<td>0.21 ± 0.02</td>
<td>445 ± 32</td>
</tr>
<tr>
<td>08/23</td>
<td>SW-US06.3</td>
<td>D19</td>
<td>721</td>
<td>1004.827</td>
<td>1081.632</td>
<td>-5.724</td>
<td>0.36 ± 0.06</td>
<td>0.28 ± 0.04</td>
<td>426 ± 22</td>
</tr>
<tr>
<td>07/42</td>
<td>SW-US07</td>
<td>F15</td>
<td>151</td>
<td>1006.333</td>
<td>1085.520</td>
<td>-5.141</td>
<td>0.36 ± 0.03</td>
<td>0.17 ± 0.03</td>
<td>278 ± 9</td>
</tr>
<tr>
<td>07/43</td>
<td>SW-US07</td>
<td>E14</td>
<td>580</td>
<td>1005.788</td>
<td>1086.768</td>
<td>-4.686</td>
<td>0.36 ± 0.01</td>
<td>0.23 ± 0.02</td>
<td>347 ± 13</td>
</tr>
<tr>
<td>06/31</td>
<td>SW-US08</td>
<td>F16</td>
<td>212</td>
<td>1006.190</td>
<td>1084.660</td>
<td>-5.440</td>
<td>0.80 ± 0.07</td>
<td>0.22 ± 0.04</td>
<td>2000 ± 420</td>
</tr>
<tr>
<td>06/32</td>
<td>SW-US08</td>
<td>E16</td>
<td>830</td>
<td>1005.477</td>
<td>1084.739</td>
<td>-5.217</td>
<td>0.53 ± 0.01</td>
<td>0.17 ± 0.03</td>
<td>703 ± 260</td>
</tr>
<tr>
<td>06/33</td>
<td>SW-US08</td>
<td>K12</td>
<td>329</td>
<td>1011.589</td>
<td>1088.461</td>
<td>-4.533</td>
<td>0.83 ± 0.06</td>
<td>0.52 ± 0.03</td>
<td>1180 ± 425</td>
</tr>
<tr>
<td>07/44</td>
<td>SW-US08</td>
<td>D16</td>
<td>1977</td>
<td>1008.584</td>
<td>1084.558</td>
<td>-5.257</td>
<td>0.62 ± 0.04</td>
<td>0.31 ± 0.04</td>
<td>334 ± 11</td>
</tr>
<tr>
<td>06/34</td>
<td>SW-US08</td>
<td>D16</td>
<td>1417</td>
<td>1004.680</td>
<td>1084.810</td>
<td>-5.142</td>
<td>0.53 ± 0.03</td>
<td>0.33 ± 0.04</td>
<td>448 ± 15</td>
</tr>
<tr>
<td>07/45</td>
<td>SW-US08</td>
<td>F13</td>
<td>236</td>
<td>1006.218</td>
<td>1087.220</td>
<td>-4.805</td>
<td>0.46 ± 0.03</td>
<td>0.23 ± 0.03</td>
<td>370 ± 12</td>
</tr>
<tr>
<td>06/38</td>
<td>SW-US08</td>
<td>E16</td>
<td>1743</td>
<td>1005.569</td>
<td>1084.751</td>
<td>-5.379</td>
<td>0.46 ± 0.02</td>
<td>0.21 ± 0.02</td>
<td>446 ± 14</td>
</tr>
<tr>
<td>07/46</td>
<td>SW-US08</td>
<td>G16</td>
<td>411</td>
<td>1007.274</td>
<td>1084.654</td>
<td>-5.509</td>
<td>0.33 ± 0.04</td>
<td>0.31 ± 0.02</td>
<td>918 ± 42</td>
</tr>
<tr>
<td>08/24</td>
<td>SW-US08</td>
<td>F15</td>
<td>580</td>
<td>1006.015</td>
<td>1085.964</td>
<td>-5.097</td>
<td>0.92 ± 0.07</td>
<td>0.38 ± 0.03</td>
<td>395 ± 20</td>
</tr>
<tr>
<td>07/47</td>
<td>W-US022.1</td>
<td>G10</td>
<td>551</td>
<td>1007.645</td>
<td>1090.851</td>
<td>-5.627</td>
<td>0.77 ± 0.04</td>
<td>0.32 ± 0.04</td>
<td>460 ± 14</td>
</tr>
<tr>
<td>08/25</td>
<td>W-US22</td>
<td>F10</td>
<td>568</td>
<td>1006.826</td>
<td>1090.892</td>
<td>-5.560</td>
<td>0.36 ± 0.05</td>
<td>0.12 ± 0.02</td>
<td>308 ± 27</td>
</tr>
<tr>
<td>08/26</td>
<td>W-US022.2</td>
<td>H8</td>
<td>334</td>
<td>1008.021</td>
<td>1092.833</td>
<td>-5.583</td>
<td>0.13 ± 0.10</td>
<td>0.10 ± 0.05</td>
<td>57 ± 9</td>
</tr>
</tbody>
</table>
The specified sub-layers at Jonzac represent changes in sedimentation, which can not be necessarily linked to environmental changes or different human occupations. The dosimetry can not be measured individually and the sub-layers are combined for lithic analysis as well as for dating. This assumption is supported by the similarity of the sediment and homogeneity of the lithic inventory. Furthermore, TL dating can not provide a resolution sufficient to differentiate short time intervals, which might be represented by such small differences. Therefore mean values from α-Al$_2$O$_3$:C-dosimetry (Table 2) are used for the external γ-dose-rate in calculating the ages for samples from the according layer and sub-layer. The internal dose rates (D_{internal}) were calculated after (Guerin et al., 2011) based on the Neutron Activation Analysis results (Table 1) for U, Th and K on 200 mg of sample material less than 160 μm from the extracted cores, which was obtained prior to the chemical treatment.

The dosemeters underestimate the cosmic dose rate before excavation because of the removal of several metres of sediment and the present day contribution was subtracted. Therefore the small cosmic dose contribution was estimated by taking into account the geographic position, altitude and estimated original thickness of sediments (Prescott and Stephan, 1982; Prescott and Hutton, 1994), employing a 5% uncertainty (after Barbouti and Rastin, 1983).

4.3. Results

4.3.1. Dosimetry results

The results of the Neutron Activation Analysis (Table 1) are rather variable as it is expected from the variety of raw materials used at the site, which originate probably from different geological sources. The samples EVA-LUM-05/21, -07/41 and -08/23 have unusual high K contents with large associated uncertainties. However, no systematics with NAA analysis could be discerned and the large analytical errors should cover most of the uncertainties which can not be accounted for (e.g. inhomogeneous distribution of K). In contrast, samples EVA-LUM-08/25 and -08/26, which were measured in a different batch, have very low radionuclide concentrations in general, but no systematic error in that analysis could be detected either. None of the measurements is therefore believed to be in error and no results are rejected.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig4.png}
\caption{Results (2σ) of HpGe γ-ray spectrometry on dry sediment samples for a) layer SW-US6.1, b) layer E-US07, c) layer SW-US08 and d) layer W-US22.}
\end{figure}
any of the sediments (Fig. 4 & Table S-1) analysed. The external γ-dose rate was therefore assumed to have been constant over the entire burial time and the results of the α-Al₂O₃-C-dosimeters (Richter et al., 2010) measurements (Table 2) were used for age calculation. The attempt to place dosimeters in a large variety of geometries within the sediments, which are assumed to be very similar to the ones occupied by the samples, could be verified in this study, because some dosimeter locations were exposed by subsequent excavation. This allowed the verification of several dosimeter positions within the sedimentologically defined layers. Additionally, it was found that in fact geometries very similar to subsequent excavation. This allowed the verification of several dosimeter positions within the sedimentologically defined layers. Additionally, it was found that in fact geometries very similar to the ones for artefacts were measured, including such as some of the dosimeter having been situated (placed) in locations of rather loose sediment, small clay pockets as well as directly adjacent to rocks (e.g. dosimeter 35). All such types of geometries were observed for lithic artefacts in the site and thus for samples as well. Standard deviations up to 15% were obtained for the γ-dose rate for some layers (Table 2), while individual standard deviations of single dosimeters range between 3 and 10%. The variation of observed results correlates with the ‘lumpiness’ of the sediments and an associated uncertainty of 20% for the external γ-dose rate was used for all TL-dating. It is therefore assumed, that smaller variations during the entire burial due to changes which can not be accounted for (e.g. changes in moisture) are included.

4.3.2. Thermoluminescence measurement results

A total of 74 flints showing signs of having been exposed to fire were tested for the sufficiency of the prehistoric heating with the heating plateau test (Aitken, 1985), 29 samples showed heating to >400 °C of the outer part of the samples, but only a total of 23 samples passed the test for the interior material of the sample as well (Table 1). This includes samples EVA-LUM-06/35, -06/36, -06/37 and -06/38. But the luminescence from these samples exhibits a peak at 220 °C, which was not present in the natural samples, and only slightly developed in the test measurements. It was assumed that any interference from this peak is negligible, because it occurs at a temperature about 150 °C lower than the peak (360–375 °C) employed for dating. However, it became of significant intensity for irradiated aliquots and showed ‘abnormal’ behaviour by growing at different rates for different aliquots, probably also independently of dose. Such differences in TL response might be related to the disproportional occurrence of materials with different luminescence behaviour on the different aliquots. Samples EVA-LUM-06/35 to -06/38 are therefore not suited for TL-analysis and were therefore rejected, because no reliable palaeodose can be deduced from such samples, of which the luminescence properties are currently investigated (Richter, forthcoming).

No ‘abnormal’ behaviour was observed for the remaining 19 samples for which ages were calculated, with a triple age determination by identical procedures for sample EVA-LUM-07/42, which are independent except the fact that the sample material originates from different portions of a single lithic artefact.

The results of the luminescence measurements are reported with the ages (Table 3) and replace the preliminary TL-dating results previously reported (Jaubert et al., 2008).

The alpha efficiencies are quite variable and it is apparent from the repeat sample EVA-LUM-07/42, that the determination is not straightforward as evidenced by the variable results obtained, while all the other data for the three sub-samples is in excellent agreement. The ages agree as well, but only because of the low concentrations in radionuclides, which makes the internal dose rate less significant. These results indicate the need for improvement of the determination of the alpha sensitivity for samples where the internal contribution to the dose rate is dominant.

Overall, the ages are rather dependant on the assumption of constancy of the external γ-dose rate (Richter, 2007), and in fact, are also somewhat dependant on the estimation of the cosmic dose as well, because of the low external γ-dose rate in some cases, e.g. in layer SW-US07 (Table 3). In all cases the external γ-dose makes up more than 50% of the total dose-rate and the cosmic contribution up to about 30%.

The age results for the Quina Mousterian from Layer W-US22 range from 68 to 81 ka. Sample EVA-LUM-08/26 has an extremely low alpha sensitivity (Table 3). However, because of the very low content in radionuclides (Table 1) of this bright chalcedony-like sample the effect on the dose rate is small and the resulting age agrees very well with the estimates for the other two samples already at 1-sigma (Table 3).

For the Denticulate Mousterian assemblage from Layer SW-US08 a total of eight samples were measured, giving ages between of 47.3 ± 7.1 ka and 66.0 ± 9.3 ka. The lowest age is

Table 2

Locations and external γ-dose rates for α-Al₂O₃-C dosimeters and the mean for individual layers.

<table>
<thead>
<tr>
<th>Dosimeter ID</th>
<th>Area/layer</th>
<th>Year</th>
<th>x (m)</th>
<th>y (m)</th>
<th>z (m)</th>
<th>µGy a⁻¹ Mean ± σ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>E-US05.2</td>
<td>2005</td>
<td>1021.967</td>
<td>1087.184</td>
<td>-4.111</td>
<td>586</td>
</tr>
<tr>
<td>11</td>
<td>E-US05.2</td>
<td>2005</td>
<td>1021.967</td>
<td>1086.360</td>
<td>-4.187</td>
<td>779</td>
</tr>
<tr>
<td>12</td>
<td>E-US05.2</td>
<td>2005</td>
<td>1022.959</td>
<td>1085.462</td>
<td>-4.315</td>
<td>819</td>
</tr>
<tr>
<td>13</td>
<td>E-US05.2</td>
<td>2005</td>
<td>1022.927</td>
<td>1084.617</td>
<td>-4.394</td>
<td>912</td>
</tr>
<tr>
<td>14</td>
<td>E-US05.2</td>
<td>2005</td>
<td>1022.963</td>
<td>1087.402</td>
<td>-4.381</td>
<td>675</td>
</tr>
<tr>
<td>15</td>
<td>E-US05.2</td>
<td>2005</td>
<td>1022.942</td>
<td>1086.583</td>
<td>-4.507</td>
<td>653</td>
</tr>
<tr>
<td>16</td>
<td>E-US05.2</td>
<td>2005</td>
<td>1022.942</td>
<td>1085.904</td>
<td>-4.717</td>
<td>605</td>
</tr>
<tr>
<td>17</td>
<td>E-US05.2</td>
<td>2005</td>
<td>1022.942</td>
<td>1085.904</td>
<td>-4.717</td>
<td>605</td>
</tr>
</tbody>
</table>

Table 3

* Value excluded because dosimeter was shallowly placed into a rock.
provided by a sample with a rather high K-content (EVA-LUM-06/33), but another sample with an even higher K-value (EVA-LUM-06/31) gave an age very similar to the other samples from this layer (Table 3). This is an indication that inhomogeneous K-distribution is not responsible for such a low age, but rather a result of the external γ-dose-rate value which had to be used.

Only two samples are available for the MTA Layer SW-US07, one of which (EVA-LUM-07/42) was split in 3 parts and treated as independent samples, including individual NAA analysis for all three parts. The resulting ages for this sample are identical at around 67 ka (Table 3) and, therefore, provide confidence in the procedures, despite the differences in the determination of the alpha sensitivity. The age for the other sample (EVA-LUM-07/43) agrees very well within uncertainties at 64.5 ± 8.4 ka. The low external γ-dose rate is reflected in the small palaeodose values for these samples, which ages all agree at 1-σ probability.

Two samples from Layer SW-US08, also MTA, give congruent results of 69.1 ± 10.5 ka and 65.6 ± 9.6 ka while another sample (EVA-LUM-05/21) provides a younger age of 41.3 ± 4.9 ka (Table 3) from this layer which is showing evidence of alterations.

The age results for Layer W-US22 pass the Shapiro–Wilks test at p = 0.05 (software package Origin 8.1), as well as a Chi-square test and, therefore, are considered to have been drawn from a normal population. The weighted mean is 72.7 ± 7.9 ka. The TL-dating results for Layer SW-US08 also belong to a normal distribution (Shapiro–Wilks and Chi-square passed). The statistical tests after Dixon (after Rorabacher, 1991) and Grubbs (Grubbs, 1969) for detecting outliers did not indicate the presence of outliers. A weighted mean age of 57.5 ± 3.5 ka is obtained for these samples. For Layer SW-US07 the weighted mean of the three age determinations on sub-samples of EVA-LUM-07/42 is 67.4 ± 6.2 ka, which is identical to the weighted mean of 66.5 ± 5.2 ka for all results under the assumption of independence. The latter might be a questionable assumption, but given the small sample number this is the best available age estimate for Layer SW-US07. It is obvious that more samples would be needed in order to provide a better age estimate for this layer and for Layer SW-US06. The three TL-dating results for layer SW-US06 do not belong to a normal distribution (Shapiro–Wilks and Chi-square failed at p = 0.05) and, therefore, only a mean age of 58.7 ± 15.1 ka can be given. However, the sample EVA-LUM-05/21 has an unusual high K-content, which might be responsible for its younger age if K is not distributed homogenously (e.g. Schmidt et al., 2012) and if such a/several hot spots were sampled for NAA analysis. However, the in situ nature of this deposit has been questioned (Jaubert et al., 2008; Barboni et al., 2008), because artefacts are not well preserved and displayed rounded and damaged edges. Furthermore, according to fabric analysis the sediment is a debris flow, while geological observations reveal run off and solifluction pattern. Rejection of this sample would give an average age about 10 ka older, which is statistically not different to the average of all samples from this layer. However, because there is no distinct evidence for inhomogeneous K-distribution, the age results overlap at 2-σ and sample numbers for this layer are too low in order to provide a reliable result.
statistically determine outliers, the simple mean age of 58.7 ± 15.1 ka is preferred for this layer.

The dating results for layer E-US05.2 are not normally distributed and the individual ages are in the expected range for Upper and Middle Palaeolithic assemblages from this mixed layer (Jaubert et al., 2008). While the external dosimetry certainly has changed during burial history because of re-deposition, it is rather similar for the upper layers (Table 2). The effect of dosimetric changes are not quantifiable, but they were likely not very large in this case, and the ages might not be so erroneous as they appear at first. However, TL dating here provides clear evidence for a depositional disturbance of this layer, and shows, within limitations, that the method can be used as a tool to test the integrity of stratigraphies where the content of a layer can not be distinguished on typo-/techno-logical grounds. Such an approach has already been used by e.g. Debenham (1994) and it can be suspected to be the case in layer SW-US06 of Jonzac as well. However, the ages for Layer E-US05.2 have little significance for the chronostratigraphical placement of the site.

The age inversion of the mean ages for Layers SW-US06 to SW-US08 is apparent because all data overlap at a probability level of 95%. Such an apparent inversion could be a result of the low number of samples per layer (SW-US06 and SW-US07) None of the calculated means is significantly different from the other and therefore the sequential occurrence in the stratigraphy plays an important role in the interpretation of the data. For Jonzac it is therefore especially important to simultaneously consider the average ages of TL and the stratigraphic order (‘archaeostratigraphy’).

6. Conclusions

TL dating of heated flint confirms the mixing of Layer E-US05.2 and provides hints on the disturbed nature of Layer SW-US06. The TL ages Layer E-US05.2 provide rough age estimates for the broad placement in time of the observed different lithic components of this layer, which are clearly attributed to the Middle Palaeolithic and the Upper Palaeolithic. In this verifiable context, TL is shown to be a valuable tool for the detection of the mixing of lithic assemblages, which can be important for sites where typological and technological pattern otherwise would not allow a differentiation. Several samples are required to obtain a good age estimate for an archaeological layer by TL dating of heated flint (Richter, 2007) in order to obtain sufficient accuracy and precision to place an assemblage into a climatostratigraphical framework. This could be achieved here only for the layer SW-US08 with a mean age estimate of 57.5 ± 3.5 ka, which, at 2-σ, places the occupation(s) responsible for the accumulation of this Denticulate Levallois assemblage into MIS 4 to MIS 3 (MIS after Lisiecki and Raymo, 2005). This age estimate, in which much confidence can be placed because of the comparable large number of samples, provides a chronometric anchor point for the sequence. According to the TL-data an identical MIS assignment is possible for the two overlying MTA layers (SW-US06 and SW-US07), whereas the underlying Mousterian of Quina Type assemblage from layer W-US22 is older and can be nominally placed in MIS 5b to MIS 4 (2-σ). Even though MIS 5b is a colder phase, the fauna from Layer W-US22 at Jonzac does not appear to be compatible and it is more likely that the Quina occupation of layer W-US22 took place in the colder climate of MIS 4. This particular attribution is often assumed for sites in South-West France (e.g. Delpech, 1996; Discamps et al., 2011; Jaubert et al., 2010). As a consequence, the subsequent occupations of Denticulate-Levallois and MTA should be placed at the beginning of MIS 3, as suggested by the faunal evidence. By combining the TL-dating results of the last heating of lithic artefacts with the ecological information obtained through the faunal remains, which are associated with the archaeology, it is possible to place the sequence of Jonzac into a generalized climatostratigraphical framework. An important result of this study is that Quina technology is not restricted to MIS 3, as some chronometric data analysis (Gulbert et al., 2008) have suggested up to now. This finding is supported by TL-dating results at Pech-de-l’Azé IV, which also provide similarly old ages for a Quina assemblage there (Richter et al., 2012).

Acknowledgements

We would like to thank S. Albert (MPI-EVA, Leipzig, Germany) for her help in sample preparation and TL-measurements, and the Max-Planck-Society and the Ministry of Culture (DRAC-SRA Poitou-Charentes) for financial support or authorization. The Neutron Activation Analysis was performed by T. Schifer (Curt-Engelhorn-Zentrum Archäometrie gGmbH, Mannheim, Germany) and HpGe γ-spectrometry by D. Degering (Verein für Kernverfahrenstechnik und Analytik Rosendorf e.V., Dresden, Germany).

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.jas.2012.09.003.

References

