
Semantics drives analogical change in Germanic strong verb paradigms: A phylogenetic study

New Advances in Phylolinguistics | MPI-EVA 2025

Alexandru Craevschi, Sarah Babinski, Chundra Cathcart

Uniformity in language

What **factors** or **mechanisms** allow certain non-uniform structures to **resist leveling** and survive despite the apparent benefits of uniformity?

Germanic strong verbs

- Strong verbs have been widely studied and well documented and represent a perfect empirical showcase for the study on nonuniformity in language, specifically in verbal paradigms
- Strong verbs in Germanic signal the change in Tense-Aspect-Mood (TAM) by changing the stem vowel, not by adding a dental suffix:
 - Drink drank drunk | Strong verb
 Help helped helped
 - H<u>e</u>lp h<u>e</u>lped h<u>e</u>lped
 Weak verb
- These verbs have certain alternation patterns that stem from PIE and are maintained across the whole clade up to this day (over 2000 years). Some verbs, like *help*, have been levelled

Capturing paradigms

Swiss National Science Foundation

Principal parts represent a set of forms from which all the other forms of a verb can be inferred

Old High German

Indicative	Present	Past
INF.	singan	_
1SG	singu	sang
2SG	singis	sungi
3SG	singit	sang
1PL	singem	sungum
2PL	singet	sungut
3PL	singant	sungun
Participle	singanti	gisungan

Princi	ipal Parts	
Infinitive	s <u>i</u> ngan	Α
3SG Past	s <u>a</u> ng	В
Past Part.	gis <u>u</u> ngan	С

Workshop on Phylogenetic Modeling and Human History | 4

Pattern examples

Dute	ch <i>bring</i>	
Infinitive	br <u>e</u> ngen	Α
3SG Past	br <u>a</u> cht	В
Past Part.	gebr <u>a</u> cht	В

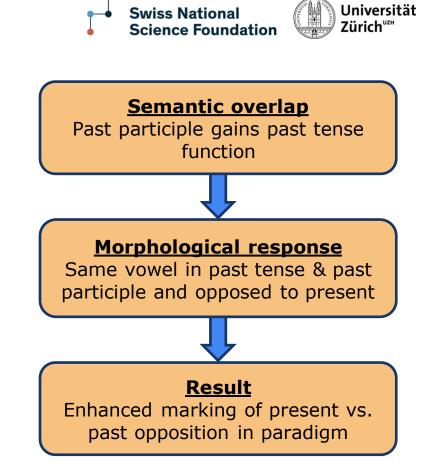
Icela	ndic <i>sink</i>	
Infinitive	s <u>ö</u> kkva	Α
3SG Past	s <u>ö</u> kk	Α
Past Part.	s <u>o</u> kkið	В

Swed	ish <i>write</i>	
Infinitive	skr <u>i</u> da	Α
3SG Past	skr <u>e</u> d	В
Past Part.	skr <u>i</u> dit	Α

Engl	ish <i>help</i>	
Infinitive	h <u>e</u> lp	Α
3SG Past	h <u>e</u> lped	Α
Past Part.	h <u>e</u> lped	Α

The Semantic Drive: Extended Past Participles

English: Non-extended


I ate pasta yesterday ≠ ?? I have eaten pasta yesterday

German: Extended

Ich aß gestern Pasta \equiv Ich habe gestern Pasta gegessen

In form and meaning:

Present \neq Past tense = Past participle

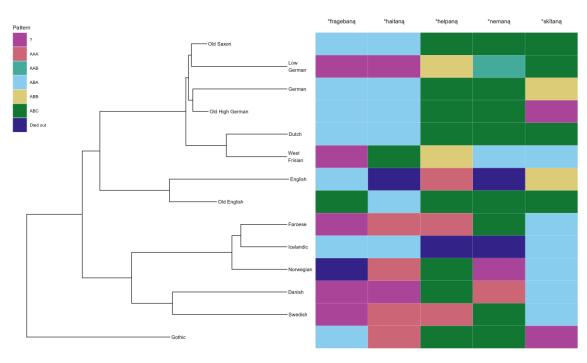
ABB pattern

Dutch bring		
Infinitive br <u>e</u> ngen	A	Present
3SG Past br <u>a</u> cht	В	Past in
Past Part. gebr <u>a</u> cht	В	"extended"
		1

Icela	ndic <i>sink</i>	
Infinitive	s <u>ö</u> kkva	A
3SG Past	s <u>ö</u> kk	A
Past Part.	s <u>o</u> kkið	В

Swed	<u>ish write</u>	
Infinitive	skr <u>i</u> da	Α
3SG Past	skr <u>e</u> d	В
Past Part.	skr <u>i</u> dit	A

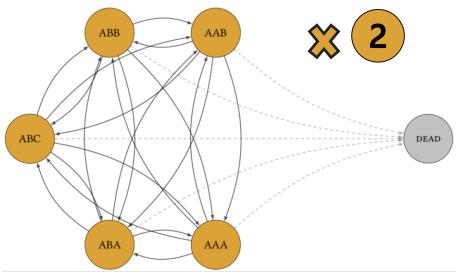
Engl	ish help	
Infinitive	h <u>e</u> lp	A
3SG Past	h <u>e</u> lped	A
Past Part.	h <u>e</u> lped	A


Workshop on Phylogenetic Modeling and Human History | 7

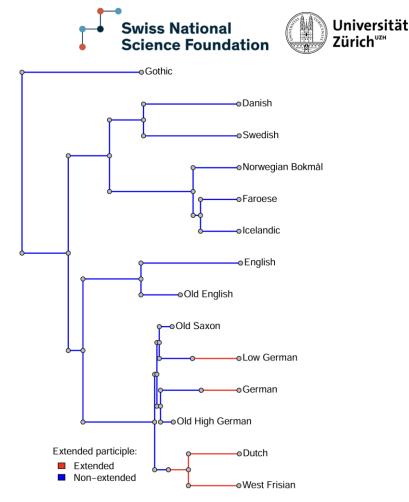
Swiss National Science Foundation

The data

- Scrape relevant Germanic verbs from Wiktionary
- Combine it with UniMorph
- Code the alternations for each verb
- Map the data to the trees from Chang et al. (2015)
- After some filtering, we are left with 107 strong verbs for 14 Germanic languages

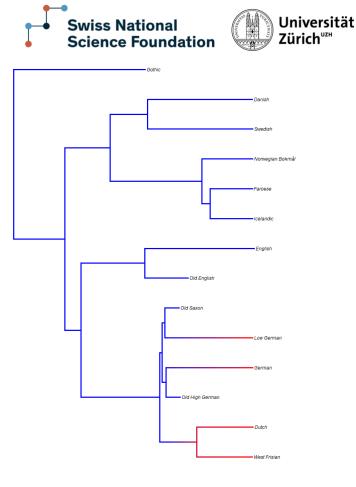


Swiss National Science Foundation


The hierarchical model

- Typically, we infer the evolutionary dynamics by estimating the transition rates between the states
- To capture the difference in dynamics, we instead estimate two sets of transition rates (two regimes):
 - For time spent in **non-extended** state of past participle: Q^N
 - For time spent in **extended state** of past participle: Q^E

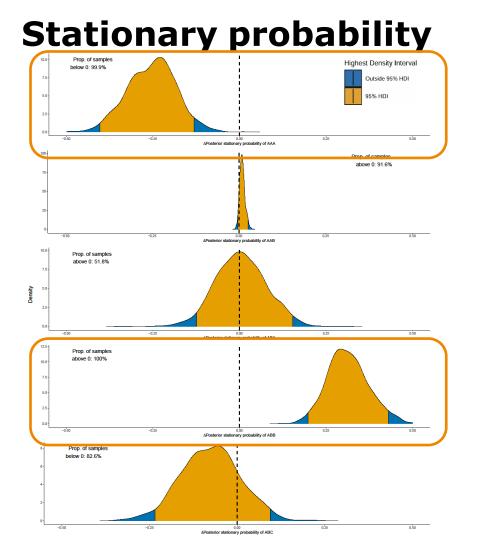
The hierarchical model

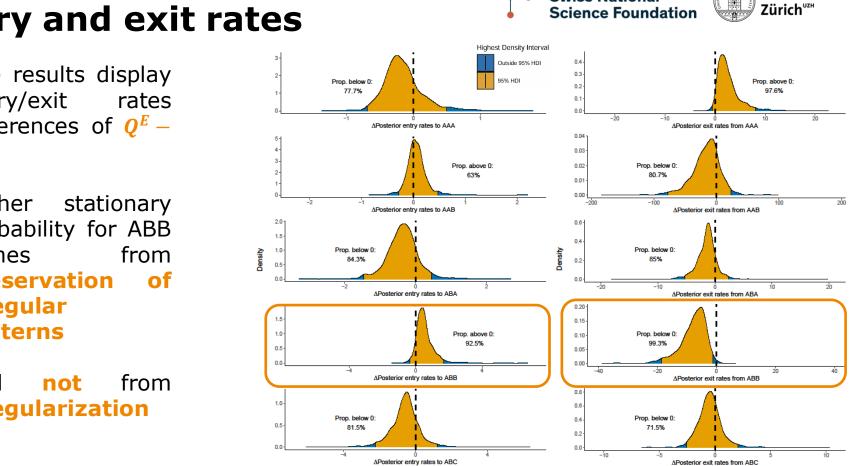

- Typically, we infer the evolutionary dynamics by estimating the transition rates between the states
- To capture the difference in dynamics, we instead estimate two sets of transition rates (two regimes):
 - For time spent in **non-extended** state of past participle: Q^N
 - For time spent in **extended state** of past participle: Q^E
- We use hierarchical model to accommodate verb-level idiosyncrasies and decouple them from lexical idiosyncrasies

Workshop on Phylogenetic Modeling and Human History | 10

The hierarchical model

- Typically, we infer the evolutionary dynamics by estimating the transition rates between the states
- To capture the difference in dynamics, we instead estimate two sets of transition rates (two regimes):
 - For time spent in non-extended state of past participle: Q^N
 - For time spent in **extended state** of past participle: Q^E
- We use hierarchical model to accommodate verb-level idiosyncrasies and decouple them from lexical idiosyncrasies




Hypothesis checking and results

- Formal hypothesis: Extended regime will show higher stationary probability for ABB than non-extended regime.
- > The difference in stationary probability may come from:
 - 1) Higher entry (gain) rates to a state
 - 2) Lower exit (loss) rates from a state
- Depending on (1) or (2), there may be different mechanisms at play

- > The results display stationary probability of $Q^E Q^N$
- There is decisive support in preference for ABB under extended past participle
- Due to cumulative nature of probability, increase in ABB leads to decrease in AAA

Workshop on Phylogenetic Modeling and Human History | 14

Swiss National

Universität

Entry and exit rates

- \succ The results display entry/exit rates differences of O^E – 0^
- > Higher stationary probability for ABB comes preservation irregular patterns

> And **not** irregularization

Conclusion

- We observe higher preference for alignment of form and meaning:
 Present ≠ Past tense = Past participle
- For paradigms, this alignment is achieved by preserving the aligning state (ABB)
- We propose a new method that allows robust check of correlated evolution that can be extended to multiple applicable scenarios

Swiss National Science Foundation

References

- Bickel, B., Giraud, A., Zuberbühler K., van Schaik C. (2024). Language follows a distinct mode of extra-genomic evolution. *Physics of Life Reviews*, 50, 211–225. https://doi.org/10.1016/j.plrev.2024.08.003
- Fertig, D. (2013). Analogy and Morphological Change. *Edinburgh University Press.*
- Dammel, A., Nowak, J., & Schmuck, M. (2010). Strong-Verb Paradigm Leveling in Four Germanic Languages: A Category Frequency Approach. *Journal of Germanic Linguistics*, 22(4), 337–359. doi:10.1017/S1470542710000097
- De Smet, I., & Van de Velde, F. (2019). Reassessing the evolution of West Germanic preterite inflection. *Diachronica*, 36(2), 139–180. doi: 10.1075/dia.18020.des
- Heggarty, P., Anderson, C., Scarborough, M., King, B., Bouckaert, R., Jocz, L., Kümmel, M. J., Jügel, T., Irslinger, B., Pooth, R., Liljegren, H., Strand, R. F., Haig, G., Macák, M., Kim, R. I., Anonby, E., Pronk, T., Belyaev, O., Dewey-Findell, T. K., Boutilier, M., ... Gray, R. D. (2023). Language trees with sampled ancestors support a hybrid model for the origin of Indo-European languages. *Science* (New York, N.Y.), 381(6656), eabg0818. doi: 10.1126/science.abg0818
- Herce, B. (2023). *The Typological Diversity of Morphomes: A Cross-Linguistic Study of Unnatural Morphology*, Oxford University Press, https://doi.org/10.1093/oso/9780192864598.003.0003
- Chang, W., Cathcart, C., Hall, D., & Garrett, A. (2015). Ancestry-constrained phylogenetic analysis supports the Indo-European steppe hypothesis. *Language*, 91(1), 194-244. doi: 10.1353/lan.2015.0005
- Seiler, G. & Weber, T. (2022) Reichenbach meets underspecification: A novel approach to perfect-past-cycle in German (and elsewhere). *Journal of Historical Linguistics*, 12(1), 108-166. doi:10.1075/jhl.20002.sei