Noun-to-verb ratio and word order

Jan Strunk¹, Balthasar Bickel², Swintha Danielsen³, Iren Hartmann⁴, Brigitte Pakendorf⁵, Søren Wichmann⁴, Alena Witzlack-Makarevich⁶, Taras Zakharko², Frank Seifart^{1,4}

¹U Amsterdam, ²U Zürich, ³U Leipzig, ⁴MPI for Evolutionary Anthropology Leipzig, ⁵CNRS & U Lyon-Lumière 2, ⁶U Kiel

Also involved in data processing and annotation: Helen Geyer, Olga Khorkhova, Kristina Labs, Marlous Oomen, Robert Schikowski, Lena Sell, Lisa Steinbach, Laura Wägerle, and Evgeniya Zhivotova

Initial observation

Variation in noun vs. verb availability and/or usage across

- the lifespan (Tardif et al. 1997[†], Bornstein et al. 2004[§], Stoll et al. 2010[†])
- brain health status (Bird et al. 2000[‡], Thompson et al. 2002[°])
- genres, registers, styles (Biber et al. 1998⁺, Gaenszle et al. 2010[%])
- cultures and languages (Bickel 2003^{*}, Stoll & Bickel 2009[#])

or across combinations of these

Similar observations in our project *The relative frequencies of nouns*, pronouns, and verbs cross-linguistically (NTVR)

NTVR project: spoken corpora of 9 languages

	Speakers	Texts	Annotation Units	Words
Baure (Arawakan; Danielsen et al. 2009)	15	45	4,925	19,911
Bora (Boran; Seifart 2009)	46	37	4,037	29,997
Chintang (Sino-Tibetan; Bickel et al. 2011)	74	40	9,378	37,823
Dutch (Indo-European; CGN; CGN-Consortium, Language and Speech Nijmegen & ELIS Gent 2003)	42	17	5,822	39,720
English (NXT-Switchboard Corpus; Godfrey & Holiman 1993; Calhoun et al. 2009)	80	47	6,942	56,143
Hoocak (Siouan; Hartmann 2013)	30	62	2,961	23,207
Lamunkhin Even (Tungusic; Pakendorf & Aralova 2010)	32	67	4,755	34,294
N uu (!Ui-Taa; Güldemann et al. 2010)	8	33	8,257	25,897
Texistepec Popoluca (Mixe-Zoquean; Wichmann 1996)	1	9	6,453	24,602

Volkswagen Foundation DoBeS grant

A simple example: NTVR = N/(N+V)

clause	Ν	V	NTVR
A man stayed on a farm.	2	1	0.67
He got hungry.	0	1	0
He says to his father-in-law:	1	1	0.5
"Give me some meat!"	1	1	0.5
His father-in-law says:	1	1	0.5
"I have no meat,	1	1	0.5
go to the dune ,	1	1	0.5
and hunt !"	0	1	0
	N 1 1	_	>

(English translation of a N|uu story)

Noun-to-verb ratio (N / (N + V)) per clause

NTVR variation in our corpora

How to explain differences in noun vs. verb usage

- Earlier research: focused on nouns in argument positions and found explanations in types of agreement systems (Bickel 2003^{*} on referential density)
- NTVR project: focus on noun and verb usage across the board
 - unlikely to be affected by type of agreement system (Bickel et al. 2013[#])
 - possible explanation: processing effects resulting from word order
 - for this study, we focus on the simple proportion of nouns rather than nouns vs. verbs (relative frequency: nouns / words)

Theory: noun usage dependent on word order?

 Incremental production (for recent review, MacDonald 2013*)
→alternation of partial utterance planning, execution, and subsequent planning

 \rightarrow pressure to start and complete plans early

- Good for V-early structures, with early display of plan for proposition (predicate, argument structure, tense, mood, settings, etc.)
- Predictions from this for V-final structures ...

Possible predictions for V-final structures:

- Increased usage of non-verb tokens, especially nouns as content words, in order to compensate for the delay in getting to the core information about the proposition
 - perhaps also more noun type variation (as observed in a correlational study of dictionaries by Polinsky 2012⁺), for more information load
 - but this may be counterbalanced by increased access cost that comes with lexical variation

Possible counter-hypothesis

- Noun usage is costly/harder to process in pre-verbal argument position (Ueno & Polinsky 2009^{*}):
 - increased pro-drop
 - increased use of intransitives
- Other options:
 - production costs can also be avoided by right-dislocation (Pastor & Laka 2013[#])
 - production costs can be compensated for by optimizing lexicon shapes/the way semantic space is divided between verbs and nouns (Sauppe et al. 2013[%], in prep.)
 - speakers may just live with a slight speed loss (Seifart et al. 2014, in prep: higher N-to-V ratios result in lower production speeds)

Corpus Study

- Test the research hypothesis:
 - Verb final languages exhibit increased noun usage (in comparison to verb non-final languages),
 - expect weak signals for tokens
 - and perhaps also for lexical types

Data

 Mapping of language-specific PoS-tags to tags of {N, V, PRO, OTHER} per *lexical root*

	BORA					
	aa-bé = váa	tsá-ijyu	<i>ijtsámeí</i>	í-llí-m	útsi-kye	
	CON-M.SG=QUOT.PAST	one-day	think	3-child	3-child-M.DU-ACC	
	no-ni-cli-cli	adv-clf	v	ni- n -n	n-ni-ni	
→	PRO	OTHER	V	Ν		
	iámejcá-nu-í-ñe,	walle	ee wajj	oii i	íjcya-ne	
	festival-VBZ:DO-FUT-3	wom	an man	ł	be-3	
	n -nd-vi-ni	n	n		v-vi	
→	N(V)	Ν	Ν		V	

'And one day he thought of making a festival for his two children, who were a girl and a boy' [piivyeebe_ayju 005]

- Why roots?
- Our hypothesis concerns units with propositionally relevant content; in our corpus, PoS derivation like nominalization usually doesn't add information (e.g. nominalization for embedding)
- In more than 90% of cases, root and word category are identical

Methods: Linear mixed-effect models

- Linear mixed-effects models^{*} predicting the proportion of
 - 1. **noun tokens** per **annotation unit** (utterance or sentence)
 - 2. noun types per recording session / text
- An extension of ordinary linear regression models that can account for random idiosyncrasies of natural groups in the data (e.g., texts of the same speaker, register, or language)
- $P(nouns) \sim word order + plannedness + (1|session)$
- Reads as: The proportion of nouns is predicted on the basis of the two predictors word order and plannedness (fixed effects) while accounting for random variation between recording sessions (random factor).

Methods

- Fixed factors (predictors):
 - basic word order:

verb final vs. verb non-final (vs. mixed)

- speech setting:

monologue vs. dialogue vs. multi-party conversation, estimated on the basis of the number of speakers in a recording session

- plannedness:

- planned: (almost) memorized traditional narratives
- semi-spontaneous: personal narratives, life stories, procedurals, etc.
- spontaneous: open conversation

- Random factors (for intercepts):
 - **recording session**, capturing genre, topic choice, style, register, speakers and their social relations and interactions
 - **language**, capturing other aspects of grammar that might influence noun and verb usage

Results: proportion of nouns depending on word order

Results: proportion of nouns depending on word order

Results: statistical model (proportion of nouns)

Best-fitting model: $P(\text{nouns}) \sim \text{word order} \times \text{plannedness} + \text{speech setting} + (1|\text{session}) + (1|\text{language})$

interaction: p = .009, word order: p < .001, plannedness: p = .002, speech setting: p = .41, session: p < .001, language: p < .001

Results: lexical types (proportion of noun root types)

- Results for lexical types are much less clear
- Still a detectable overall word order effect

Discussion

- Heavier noun usage (tokens) in annotation units (sentences) of verb-final languages than in annotation units of verb-non-final languages
- Effect of word order detectable across categories of plannedness (planned, semi-spontaneous vs. spontaneous) and speech setting (monologue, dialogue vs. multi-party conversation)
- Word order effects mostly play out for the proportion of noun tokens, word order effects on the proportion of noun types (cf. Polinsky's 2012 dictionary-based approach) are still unclear

A small relativity effect:

The word order rules you follow also regulate the amount of noun roots you produce.

There is a higher average proportion of nouns in sentences of verb-final languages than in sentence of verb-non-final languages.

This is in line with relativity effects from other aspects of grammar (agreement systems) on noun vs. verb usage (Bickel 2003^* , Stoll & Bickel $2009^{\#}$).

BUT the exact relationship between these effects still needs to be explored.

Thank you very much for your attention!