Crosslinguistic language development: Corpus, experimental and modelling studies

Lecture 3

Outline

- Productivity
- Theoretical issues
- Naturalistic corpora: analyses
 - Person and number marking on Spanish verbs
- Experimental studies
 - Case-marking in Polish
 - Transitive word order in English and French
 - Relative clauses in English and German
- Modelling studies
 - Starting small
 - Head direction

Productivity – why does it matter?

Methodologically

- Unless they are clear errors and unattested in the adult language, utterances and accompanying morphology could have been rote-learned
- If its rote-learned, it should not be compared with a productive form in another language
- So we have to have ways of assessing productivity before we can make comparisons:
 - 1. Using corpora
 - 2. Introducing novel items and seeing what the child does with them
 - 3. Comparing children's comprehension and production of utterances with contrasting forms
 - 4. Modelling to see if productivity can develop as a function of input

Theoretically

Full competence model:

Children bring abstract linguistic categories to the learning of language

Why do children make errors?

- performance limitations
- late maturation
- language-specific features

Predictions:

ØEarly abstract knowledge

ØFew errors with forms that they already know

ØRapid development

ØRelatively minimal role of input

Theoretically

Constructivist model:

Children build abstract categories as they learn languages

Why do children make errors?

- •Their representations are initially 'low-scope' and 'item-based
- They extend forms they know to the wrong contexts
- They have mis-analysed the input

Predictions:

Øltem-based generalisations

ØLimited productivity, even with forms they know, at younger ages

ØPiecemeal development

ØImportant role of input

Studies with naturalistic corpora

1. Spanish verb inflections:

- Does productivity develop?
- Are children less productive than adults?

Using corpora: Spanish verb inflections

Nottingham corpus

- Lucia: 22 hours: 2;2.25 2;7.14
- Juan; 31 hours: 1;1-.21 2;5.28
- · Only verbs used by both adult and child
 - stem
 - agreement properties
- Adult sample of verb tokens randomly reduced to number found in child's speech

Aguado-Orea, PhD.

Number of inflections per stem

- No significant difference between parents
- Significant difference between children and parents at both tested ages
- For Juan, significant difference between first and second half of the corpus

2. Are errors just 'noise' in the data?

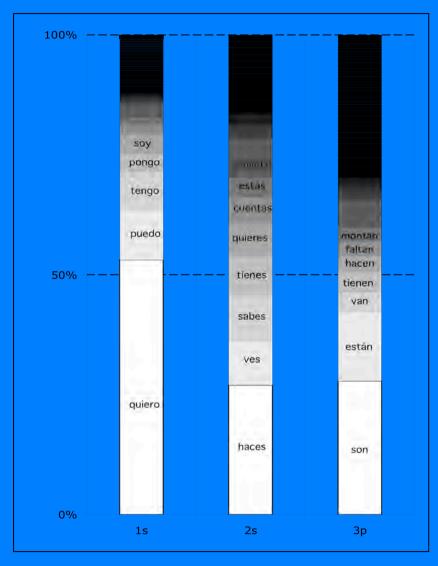
- Does productivity develop?
- Are children less productive than adults?

Rates of Subject-Verb Agreement Error in Juan and Lucía's data broken down by Person and Number

	Juan		Lucía	
Inflection	Contexts	Error Rate	Contexts	Error Rate
Overall	3152	4.5%	1672	4.4%

Aguado-Orea & Pine, under review, Aguado-Orea, PhD.

Rates of Subject-Verb Agreement Error in Juan and Lucía's data broken down by Person and Number


	Juan		Lucía	
Inflection	Contexts	Error Rate	Contexts	Error Rate
Overall	3152	4.5%	1672	4.4%
1sg	693	4.9%	496	3.0%
2sg	147	10.2%	96	22.9%
3sg	1997	0.7%	1018	0.5%
1pl	61	0	14	0
3pl	251	31.5%	48	66.7%

Pattern of error very similar across children (r = 0.99)


Not consistent with idea that errors can be Lei disregarded as noise in the data

April 2008

Rates of Subject-Verb Agreement Error in Juan's Data as a function of Lexical Frequency

Summary

- Apparent sophistication of Spanish children's use of verb inflection an illusion
- Low overall error rate reflects
 - Children's knowledge of a relatively small number of high frequency forms
 - Children's use of most frequent inflection (3rd person singular) as a 'default' when they don't know what to do

Experimental studies

Structure	Method	Languages
Case-marking	Elicited production	Polish
Transitive	Weird word order	English, French
Relative clauses	Sentence repetition	English, German

Why novel forms?

- The only way to tell whether there is productivity
- Based on Berko's 'wug' test

1. Case-marking in Polish

The effect of a source form on the production of a target form.

Six source-target pairs (conditions):

```
à
DAT MASC -owi
                         GEN MASC -a
                   à
LOC MASC -u
                         GEN MASC -a
                   à
INSTR MASC -em
                         GEN MASC -a
                   à
DAT FEM -i
                         GEN FEM -i
                   à
LOC FEM -i
                         GEN FEM -i
                   à
INSTR FEM −a
                         GEN FEM -i
```

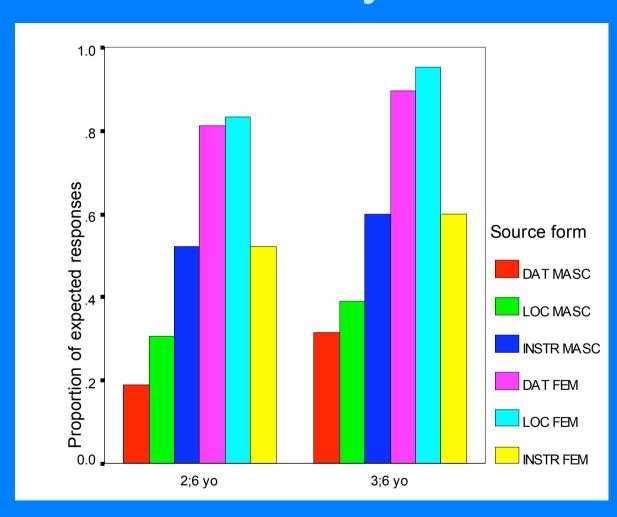
Krajewski et al., 2007 Krajewski, PhD

Method

- Two age groups:
 - younger (N = 24, mean = 2;8, median = 2;8)
 - older (N = 31, mean = 3;6, median = 3;6)
- 4 items in each condition
- Within-subject design: each child gets all 24 items
- Each item: 3 drawings featuring a funny creature, two drawings to model a source form of its name, the last drawing to test the target form

The boy is thinking about X-loc. (e.g. 'Doci')

The boy is riding X-loc. (e.g. 'Doci')


The boy is cuddling up to _____ [X-gen]. (e.g. 'Doci')

The doctor takes X's temperature [X-dat]. (e.g. 'Puniowi')

The doctor gives an injection to X-dat. (e.g. 'Puniowi')

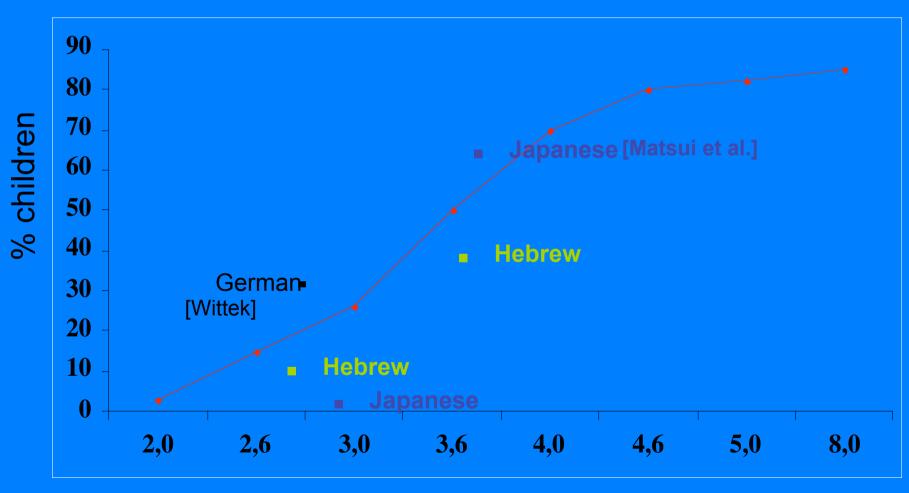
The doctor is cuddling up to _____ [X-gen]. (e.g. 'Punia')

Study 1: Results

 Small but significant effect of age

F(1, 53)=4.109, p=.048, partial η^2 =.072

- The same pattern of results in both age groups
- Main effect of source form


F(3.83, 203.008)=60.184, p<.001, partial η²=.532

Conclusions

- Full system builds up, not all there from the outset – even some adults may not be fully productive
- Movement from one form to another may differ for both source and target
- Nominative not necessarily the 'base'
- Frequency is important but so are other factors e.g. 'phonological neighbourhoods'

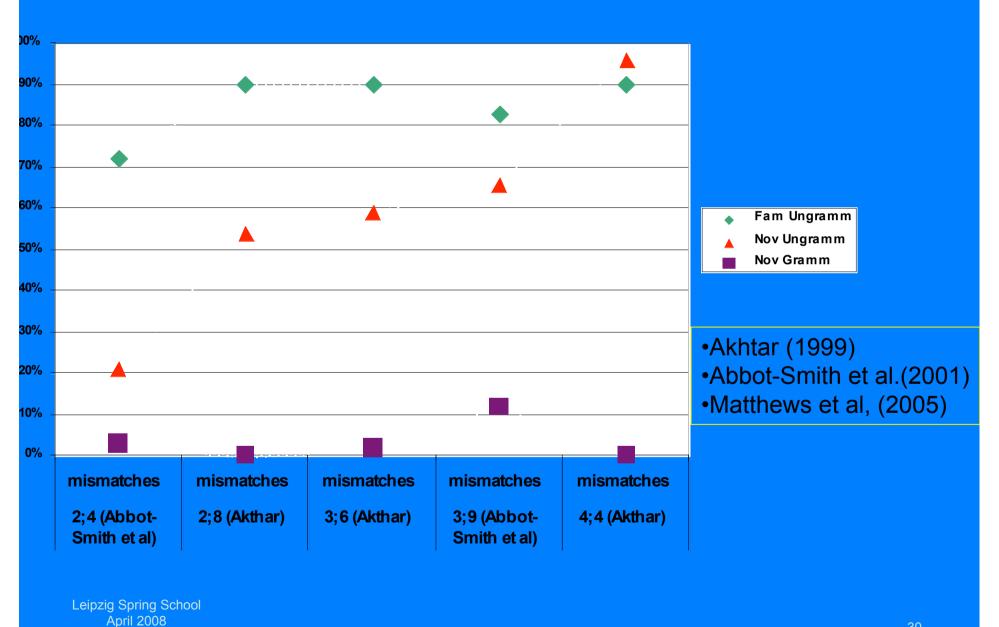
2. Learning an abstract transitive construction

Novel verb studies of Syntax

Leipzig Spring School April 2008

Tomasello, 2000

Weird word order


Pull

Watch what Bear is going to do to Duck!

Bear Duck pulling!
Look! Bear Duck pulling
Oh, Bear Duck pulled
Did you see what
happened?
Bear Duck pulled!

% Mismatches as a function of condition and age group

Weird word order in French and English

John pushes Mary John pousse Mary

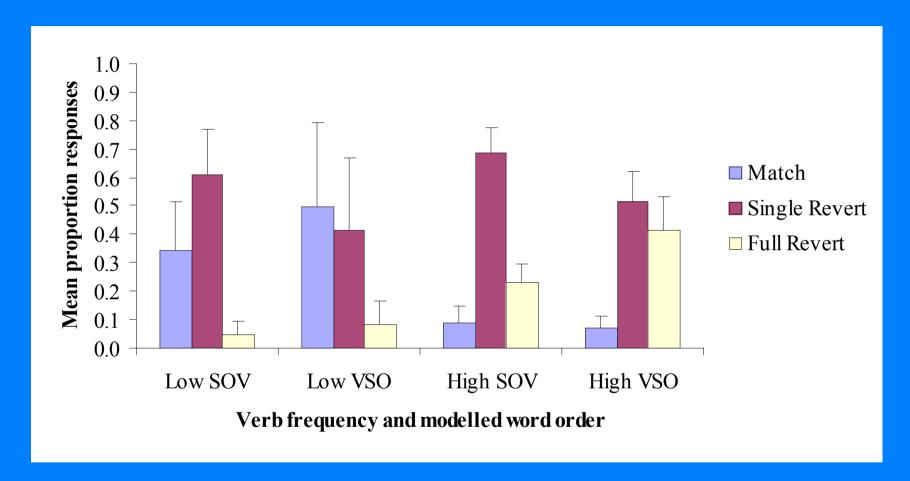
He pushes her II la pousse

Matthews et al, 2007]

SOV

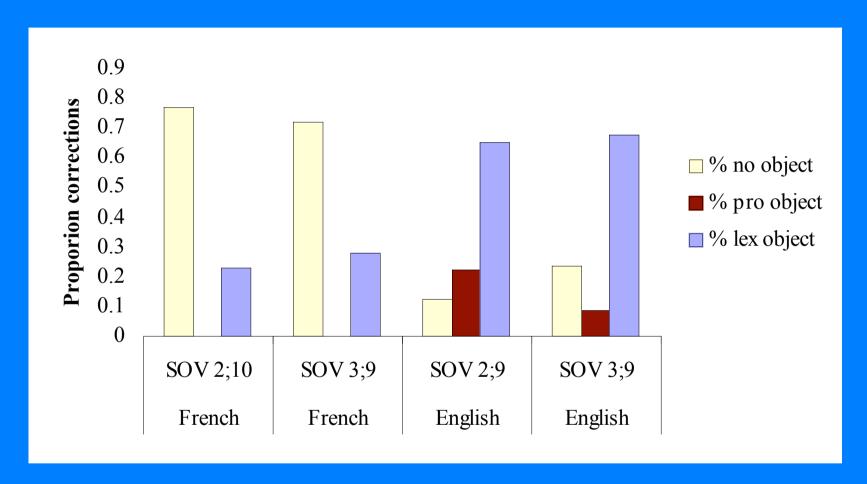
Oh! Regarde ce que fait Renard à Canard [Oh! Look what Fox is doing to Duck]

Renard Canard pousse [Fox Duck pushes/is pushing]


Oh la la, Renard Canard pousse!

Oľ

VSO


Pousse Renard Canard Etc....

Weird word order in French

Mean proportion of Matches, Single Argument Reversions and Full Reversions as a function of verb frequency and modelled word order (mean age 2;10).

Object expression in English and French

Mean proportion of canonically ordered responses that expressed no object, a pronominal object or a lexical object as a function of age and language.

2. Relative clauses in English and German

- Sentence repetition is relatively easy for children although they have to be able to say sentences of equivalent length
- Compare repetition on different structures
- Rank structures in terms of correct repetitions/types of errors
- Compare rankings between languages
- Children aged 4;3 4;9

Examples of English test sentences

- S-relative: intransitive verb and subject gap
 - There's the boy who played in the garden yesterday
- A-relative: transitive verb and subject gap
 - This's the man who saw Peter on the bus this morning
- P-relative: direct object gap
 - · This's the girl who the boy teased at school this morning
- IO-relative: indirect object gap
 - There's the girl who Peter borrowed a football from
- OBL-relative: oblique gap
 - · This's the dog that the cat ran away from this morning
- GEN-relative: with a genitive relative pronoun
 - This's the woman whose cat caught a mouse yesterday

Examples of German test sentences

- S-relative: intransitive verb and subject gap
 - Da ist die Katze, die gerade auf den Baum geklettert ist
- A-relative: transitive verb and subject gap
 - Da ist der Junge, der den Mann im Garten gesucht hat
- P-relative: direct object gap
 - · Da ist der Mann, dem das Mädchen im Stall gesehen hat
- IO-relative: indirect object gap
 - · Da ist der Junge, dem Paul die Mütze weggenommen hat
- OBL-relative: oblique gap
 - · Da ist das Pferd, auf dem Gabi vorhin geritten ist
- GEN-relative: with a genitive relative pronoun
 - · Da ist die Frau, deren Katze eine Maus gefangen hat

Filler-gap hypothesis

SUBJ-relative

The boy [who ____ kissed Mary]

OBJ-relative

The boy [(who) Mary kissed ____]

 \emptyset S = A relatives

ØS and A relatives >> P and IO relatives

Results

For both English and German:

- Copula main clauses better than transitives
- S-relatives best > A-relatives > P-relatives
- GEN-relatives almost always incorrect

à Filler-gap hypothesis will not account for these data

à Children building from earlier simple sentences

Errors

P-, IO- and OBL-relatives à S/A relatives

When converting, the English children:

- often changed the word order
 - This is the girl who the boy teased at school this morning
 Ø This is the girl that teased the boy at school this morning
- often left out the subject
 - This is the girl who Peter borrowed a football from
 Ø This is the girl who borrowed a football from
- sometimes used resumptive pronouns
 - This is the girl who, who the boy teased this morning
 Ø This is the girl who, who the boy teased the girl this morning

Test:

Hier ist der Junge, dem die Frau ein Buch vorgelesen hat

Here is the boy whom (DAT) the woman read a book to

Child:

Hier ist der Junge, der der Frau ein Buch vorgelesen hat

Here is the boy who (NOM) read a book to the woman

Conclusions

- Copula relatives easier because this is where children start with relative clauses
- Filler-gap hypothesis not true for either language
- Children working from word order in English and case-marking in German
- Different, typologically-specific requirements for dealing with the 'same' structure

Modelling studies

- Analyses of real corpora using a particular learning model
- Using a subset of real sentences
- Using an artificial language

Starting small

- Connectionist learning model is given a set of sentences
- Has to predict what word comes next
- Measure is whether it can distinguish ungrammatical from grammatical sentences
- Can do this with simple sentence but not when complex sentences added:
 - Boy chases dog
 - · Boys chase dog
 - Mary walks
 - · Boy who dogs chase feeds cat
 - · Girls who chases dogs hits cat
- But if complex sentences added after simple sentences, then can do it

Head direction

Head direction consistency

- Artificial strings in a connectionist net
 - Sets with inconsistent head direction were harder to learn
- Used the FANAL database of languages (Dryer)
 - genera involving rule combinations that are harder for the network to learn, are rarer

Christiansen & Devlin, 1997

The end

Thank you and see you on Friday!