Understanding Typological Distributions

Balthasar Bickel

University of Leipzig

 Distributional skewings can be tested by GLMs in which the response is the odds for families to show specific skewings, i.e.

 $log(\frac{\pi(skewed towards q)}{\pi(skewed towards \neg q \mid diverse)}) = \alpha + \beta_i p_i ... + \beta_k p_k$

(Abbreviate this as $q \sim p_i \dots p_k$.)

- Statistical models \neq causal models!
- Instead, statistical models need theoretical interpretation and motivation, i.e. typological theories
- A typological theory is testable iff we can derive from it a set of statistical models, with well-defined variables p and q.
- Testable typological theories explain what's where why.

Two main classes of typological theories (as I see it)

- 1.'Match' (naturalist, functionalist) theories: some distributions are more likely than others because they are more 'natural', i.e. better tuned to the way our brain processes language and to our cognitive abilities
 - typical variables in naturalistic models: structural and discourse properties, perhaps also types of social structures (or cognitive models of them)
- 2.'Spread' (replicationalist) theories: distributions reflect the spread of structures in time and space, i.e. descent and language contact
 - typical variables in resulting models: structural and discourse properties, socio-geographic areas; family skewing independent of predictors
- The most interesting research designs combine variables from both theory classes in one model!

Match theories

- Key idea: some distributions match better ...
 - the nature of the brain
 - the nature of communication
 - the nature of society
- A classical example: according to Hawkins, the nature of incremental processing is better matched by OV structures with A≠O coding than by OV structures with A=P in morphology. We can *derive from this* the testable model:

 $log(\frac{\pi(nonneutral)}{\pi(neutral \mid diverse)}) = \alpha + \beta_1 FINAL + \beta p_j... + \beta_k p_k$

for which we found robust statistical support.

- A common misunderstanding: Match theories must posit universal 'natures', i.e. 'communication' and 'society' must be in the singular.
- *But:* a distribution can universally match universal cognition just as well as it can variably match variable cognition. In either case, what is truly universal is the 'match' between a given type of cognition and a given linguistic distribution.
- In fact, some of the best universal 'matches' come from research designs in which both cognition types and linguistic structures vary.
- The key point is that they co-vary: $q \sim p!$

A (by now) classical example: spatial relativity

language	preferred system(s) of verbal codification	system(s) of non-verbal codification		
		predicted	found	
Arrernte	А	А	most A	
Hai//om	A, (I)	А	most A	
Tzeltal	А	А	А	
Longgu	А	А	A, also R	
Dutch	R	R	R	
Japanese	R	R	R, also A	
Kilivila	I, R	R	A, also R	
Belhara	А	А	most A	
Tamil (rural)	А	А	А	
Tamil (city)	R	R	R	
Kgalagadi	R (A, I)	R	R, also A	
Mopan	Ι	ad hoc	R, A	
Totonac	Ι	ad hoc	R, A	

Table 1.	Verbal and	non-verbal	codification	of spatial	configurations
----------	------------	------------	--------------	------------	----------------

A = absolute reference system

R = relative reference system

I = intrinsic reference system

Other examples from recent relativity research

- Motion (Slobin 1996, 2000, Gennari et al. 2002)
- Objects (Lucy 1992, Imai 2000)
- Color (Roberson et al. 2000 etc.)
- Referential Density (Bickel 2003, Stoll & Bickel 2006)

Referential Density

Belhare (Kiranti, Sino-Tibetan) kinahuŋgo рліla . . . ar . . . ambibu phig-he PTCL mango [ABS] [3s.A-]pick.from.above-PT[3O] SEQ first otutui? = na ihola-e ukt-he quite.big = ART[s] bag-LOC [3s.A-]take.down-PT[3O] inetnahuŋgo dhaki-e lens-e closely.weaved.basket-LOC [3s.A-]put-pt[3O] then il-lam il-lam sas-sa-ba lens-e лпі . . . DIST:DEM-MED DIST:DEM-MED pull-CONV-LOC [3s.A-]put-PT[3O] and then saikil-lamma, saikil-lamma ta-he riksa, er rikshaw PTCL bicycle-MED bicycle-MED [3s.S-]come-PT kinahungo . . . $\langle B99.4.1-5 \rangle$ SEQ

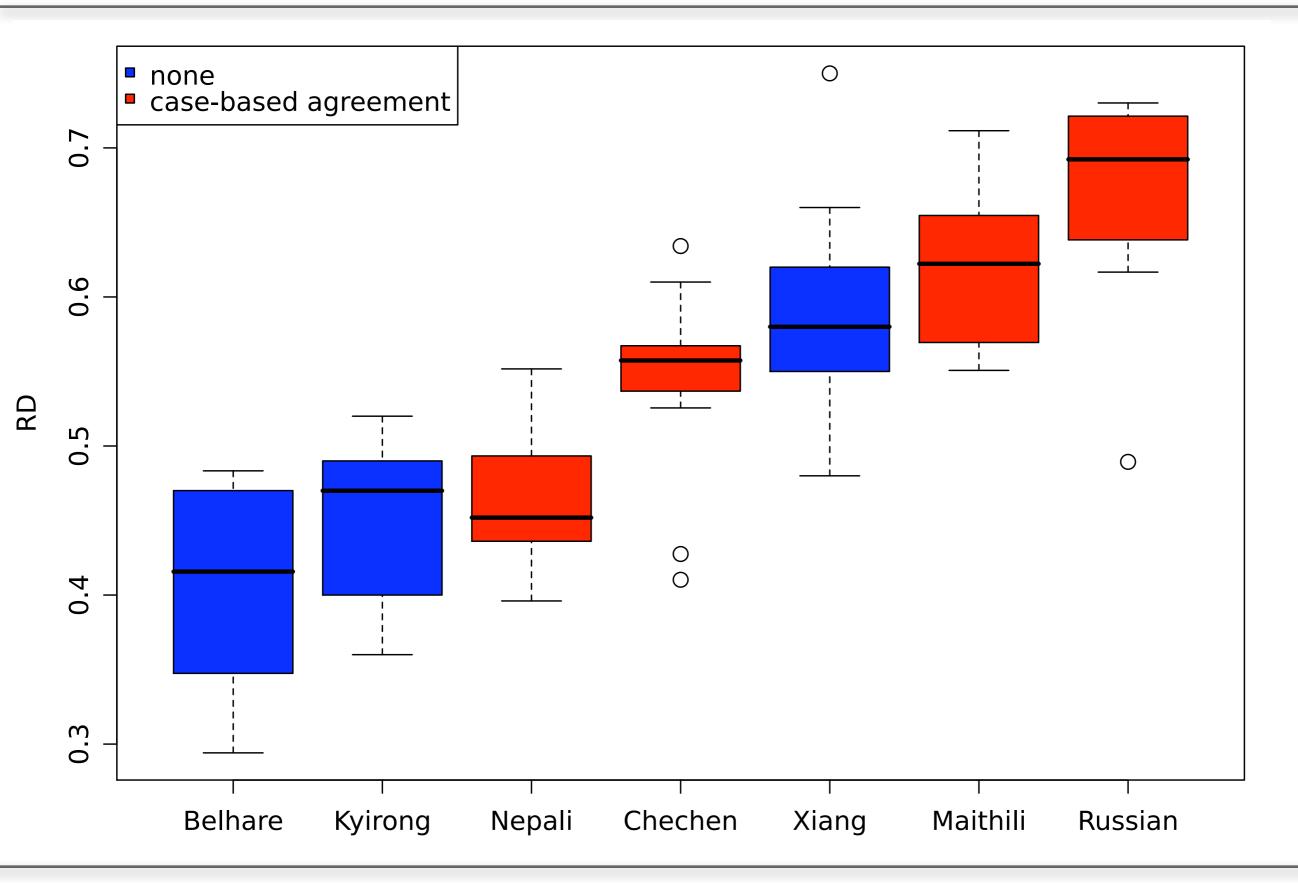
'First, ... uh ... [someone] picked mangos and took [them] down in a big bag. Then [s/he] put [them] into a basket. [Someone] moved over [an animal] by pulling from over there, and then [someone] came on a rikshaw, uh ... on a bike, on a bike and then ...'

Maithili (Indo-Aryan, Indo-European; Nepal) ek-tā ām-ke gāch rah-ai. ā...a...a... one-cl mango-gen tree[NOM] be-3NH.NOM[PR] PTCL me ek e-gotā chaurā ām tor-ait ām mango in one one-cL boy[NOM] mango[NOM] pluck-IP rah-ai AUX-3NH.NOM[-3NH.NONNOM.PR] ā . . . u toir-ke tokari me rakh-ne ām PTCL 3NH.NOM mango[NOM] pluck-CONV basket in keep-INF jāi che-l-ai. omaharse e-gotā chaurā AUX AUX-PT-3NH.NOM[-3NH.NONNOM] and then one-cl boy[NOM] e-l-ai, соте-рт-3лн.лом ladkā sāikal par cadh-ne, ā . . . u ek-tā am-ke boy.H[NOM] bike on ride-INF PTCL 3NH.NOM one-CL mango-GEN tokari corā-ke ge-l-ai . . . $\langle M3.6.1-6 \rangle$ cail basket[NOM] steal-CONV move.IP AUX-PT-3NH.NOM 'There is a mango tree and ... uh ... in the mangos, one, a boy is picking mangos. And when picking mangos, he put them into a basket.

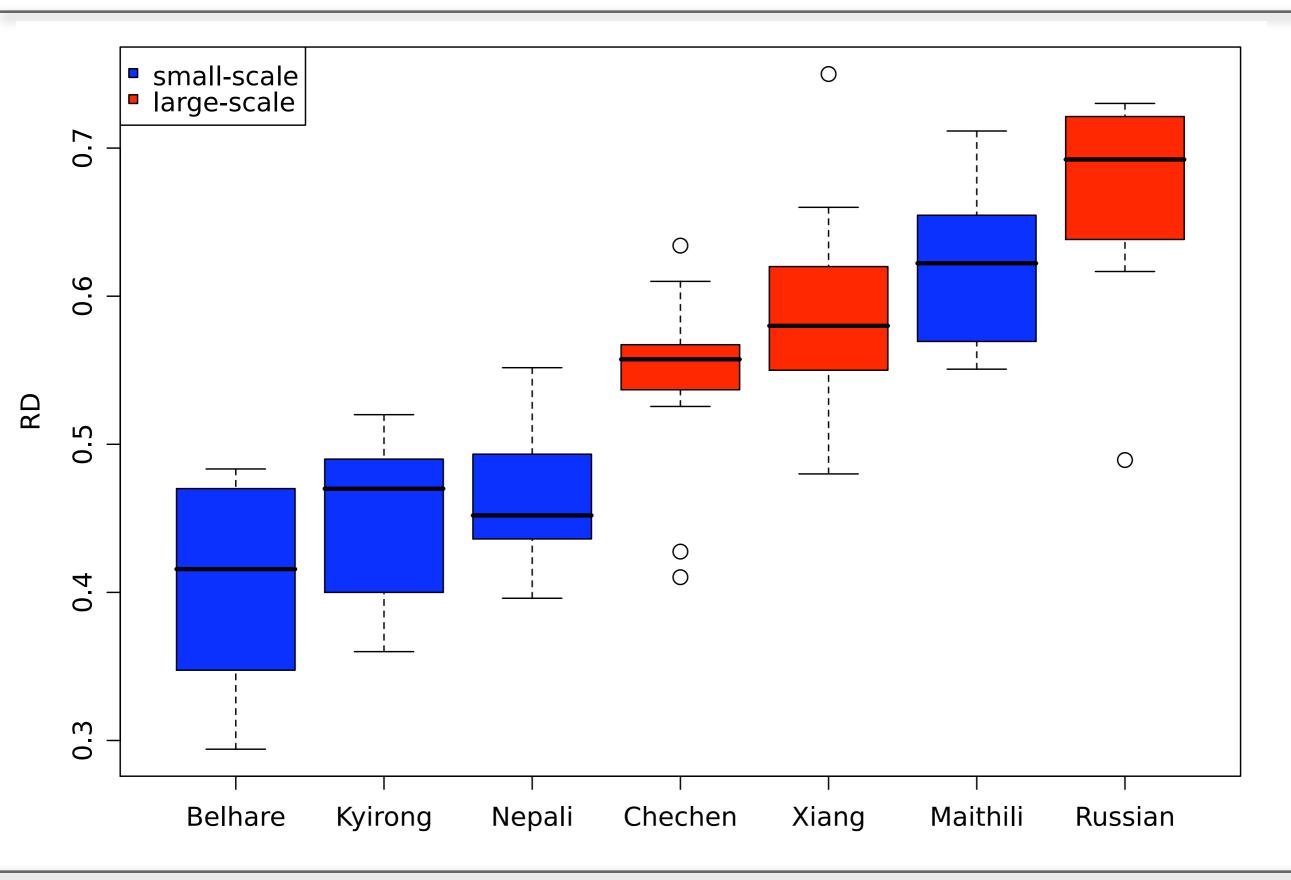
Then a boy came, a young man riding on a bike, and he stole one basket of mangos, and took off . . .'

 $RD = \frac{N \text{ (overt argument NPs)}}{N \text{ (available argument positions)}}$

- Experiment with 10 speakers from (sofar) 7 languages
- Plausible predictors:
 - Text length
 - Sociology of communication: close-knit vs. loose
 - Some structural property of grammar: case-based agreement requires NP information, and this primes activation of NP structures in production


Case-based agreement in Maithili (IE)

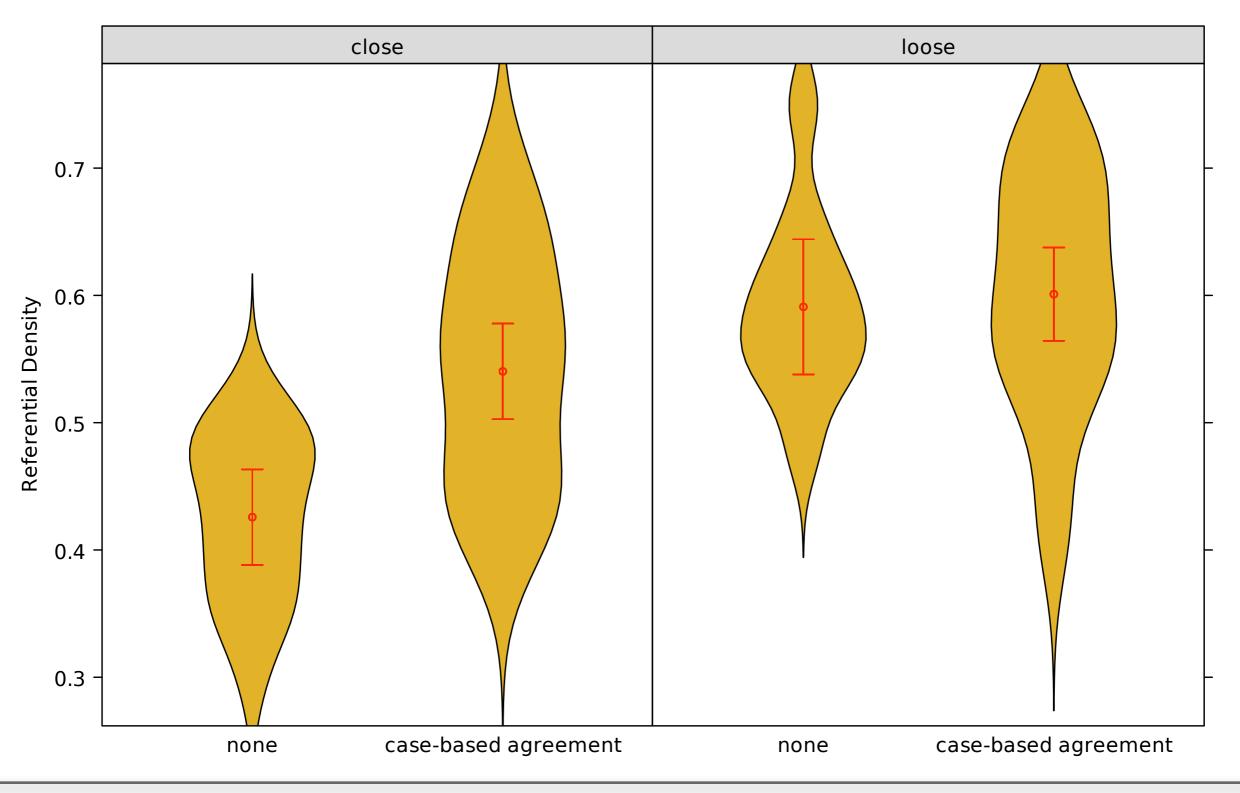
- a. (tũ) bimār ch-æ? 2nhNOM sick be-2nhNOM 'Are you sick?'
- b. (torā) khuśi ch-au?
 2nhDAT happy be-2nhNONNOM
 'Are you happy?'


Non-case-based agreement in Belhare (ST)

- a. han khar-e-ga i? 2s[-NOM] go-PST-2s Q 'Did you go?'
- b. han-na un lur-he-ga i? 2s-ERG 3s[-NOM] [3sA-]tell-PST-2s Q 'Did you tell him/her?'
- c. ciya (hanna-ha) n-niũa tis-e-ga i? tee[-NOM] 2s-GEN 2sPOSS-mind easy-PST-2s Q 'Did you like the tea?'

Referential Density

Referential Density



- Model: $\mu(RD) = \alpha + \beta_1 SOC + \beta_2 SYN + \beta_3 LENGTH + \beta_3 SOC*SYN + \beta_4 SOC*LENGTH + \beta_5 SYN*LENGTH + \beta_6 SOC*SYN*LENGTH$
- β4...6 are not significantly different from zero;
- But β_3 is significant: F(1)=14.45, p<.001
- Better model:

 μ (RD)= α + β_1 SOC+ β_2 SYN+ β_3 LENGTH+ β_3 SOC*SYN

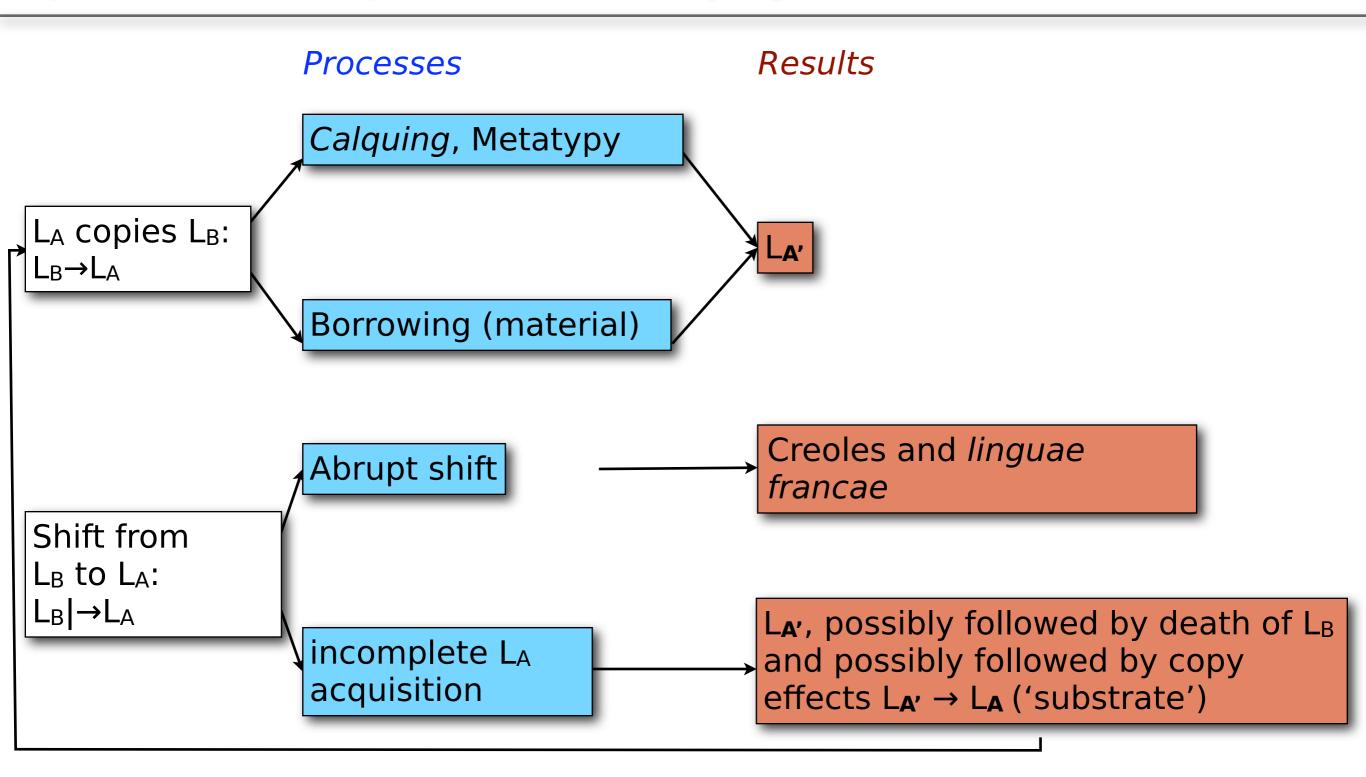
Referential Density: Results

$\mu(RD) = .43 + 1.6SOC + .12SYN - .10SOC*SYN$

Referential Density: Factorial analysis

- $\mu(RD) = \alpha + \beta_1 SYN + \beta_2 LENGTH$, SOC=close
 - β₂ ns.; β₁: *F*(1)=19.5, *p*<.001
- $\mu(RD) = \alpha + \beta_1 SYN + \beta_2 LENGTH$, SOC=loose
 - $\beta_{1..2}$ ns., but also no reversal of the SYN effect!

- Syntactic type has an effect, but it is blurred (not contradicted!) by the social type effect under loose/largesociety condition.
- 2. Social structure also has a presumably universal effect!
- This suggests that aspect of social structure and cultural types may be competing predictors of typological distributions.
- Possible other cases:
 - kinship and marriage models and kinship terminology
 - generational groupings and Lardil-style 'kintax' (see Evans 2003 in Ann. Rev. Anth. for recent discussion)
 - social stratification and honorific grammar


Match theories and relativism: what's behind it?

- Assumption: conceptual/pragmatic structure ('thinking') ≠ semantic structure ('speaking') (e.g. Levinson 1996)
- Observation: processing and acquisition is easier if the semantic structure matches the conceptual structure: "Thinking for Speaking" (Slobin 1996)
- *Hypothesis*: given certain types of frequently used structures, expect certain conceptual structures to dominate: $q \sim p!$

A note on sampling

• Small can be better than big!

Spread theories: processes underlying diffusion

Spread theories

- From all we know, contact is frequent and universal, and it is likely that it has been frequent and universal throughout the history of our species.
- Problem: contrary to a widespread belief, we cannot infer past contact from linguistic distributions!

Problem 1: circularity

- Suppose we find a set of frequency peaks in a set of variables in some geographical region, an 'isopleth' (van der Auwera 1998, Haspelmath 2001, on Europe)
- A competing explanation is that the variables are universally correlated.
- When testing universal correlations, we must control for areas....

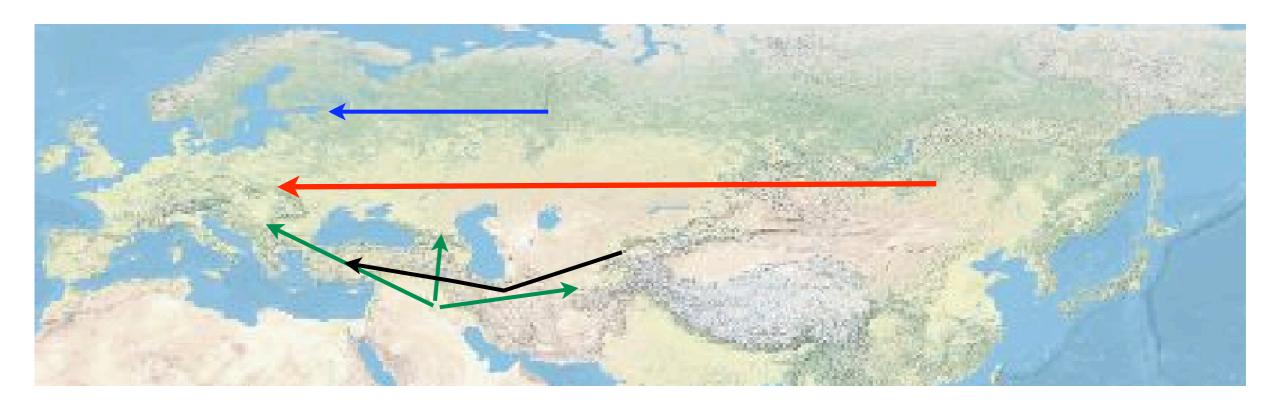
- Suppose we find evidence in 5 variables (as is the case in the Balkan area)
- In a survey of 200+ variables (the size of modern databases), we can expect to make 5 hits by chance!

- If an area is defined by linguistic data, how can it be tested?
- We can always discern clusters on a map...!

Response: Predictive Areality Theory (Bickel & Nichols 2006)

- Each variable has its own history of and potential for change and spread.
- Each distribution requires its own explanation.
- Variables may or may not have overlapping distributions.
- If variables have an overlapping distribution, shared history is one plausible explanation = a Predictive Areality Theory.
- Any Predictive Areality Theory must be grounded in what we know from population history through archaeology, genetics, ecology, geography, economics, demography, etc.

Predictive Areality Theory (Bickel & Nichols 2006)

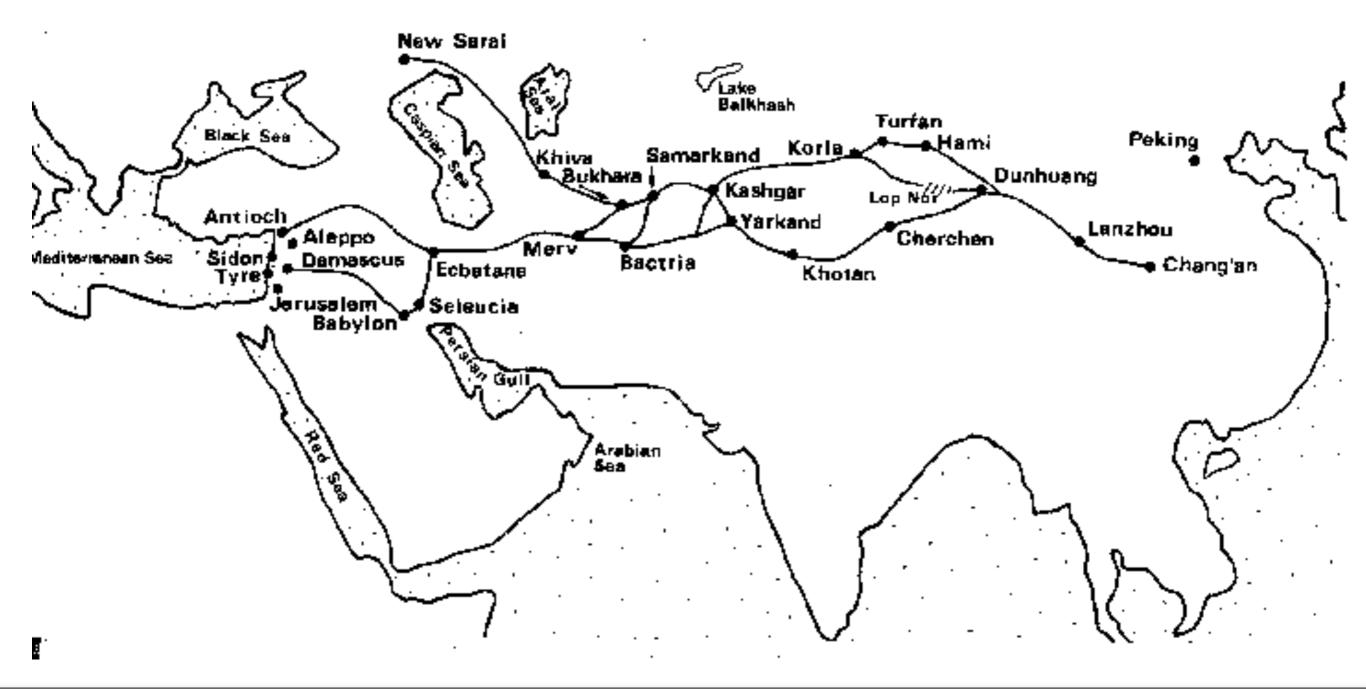

- Under this approach, areality is not a typological fact, but a predictor variable predicting typological distributions. (This is the exact opposite of what areality was under classical approaches!)
- $g(E(q)) = \alpha + \beta_1 AREA + \beta_j p_j ... + \beta_k p_k$, where
 - $p_j...p_k$ control for structural pressure and where
 - inheritance is controlled for either by the Skewed Family Method or the G-Sampling Method
- The such models (many q, high β_1 's) are statistically supported, the more robust is the theory.

A case study: Eurasia

- Extralinguistic bases for the theory:
 - historical records, archeology and known effects of cultural spreads
 - human populations genetics

Eurasia: known and reconstructed history

Repeated conquests and migrations, mostly male-dominated

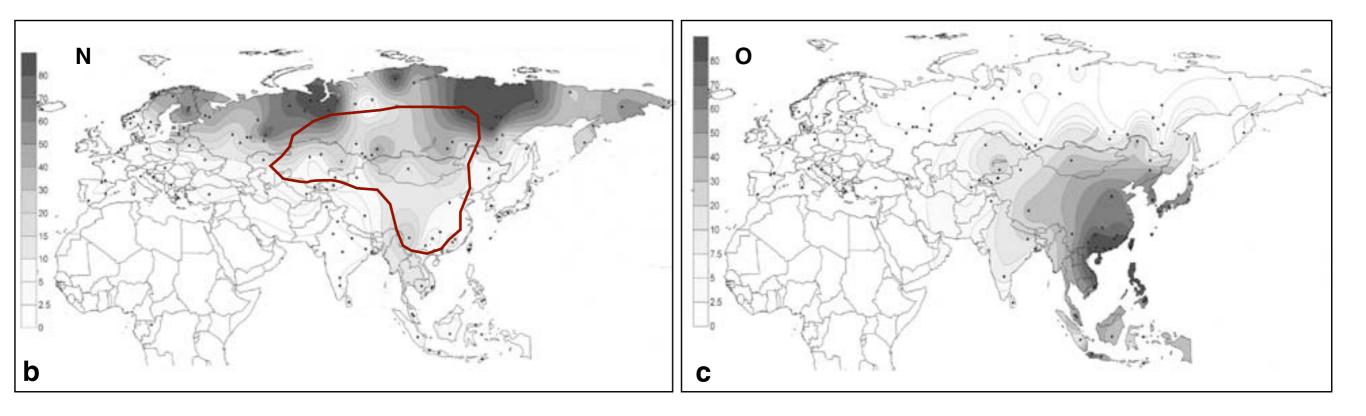

- PIE > Iranian > Turkic > Mongolian (Golden Horde)
- Uralic
- Anatolian > Armenian > Iranian > Turkic > Mongolian
- Loanwords and technology (agriculture!)

Eurasia: known and reconstructed history

The Silk Road(s)

Moscow

The Old Silk Routes



Eurasia: known and reconstructed history

- Religious traditions in South, East and Southeast Asia
- Religious traditions in Mesopotamia and Western Eurasia
- Religious traditions in Central Asia and the Himalayan Plateau (and adjacent regions)
- Culinary traditions in South and Southeast Asia

Eurasia: genetics

N vs. O Y-chromosomal haplogroup split about 34ky ago suggests a "counter-clockwise northern route of the Ychromosome haplogroup N from Southeast Asia towards Europe" (Rootsi et al. 2007):

Approximate spread zone of the most widely spread mtDNA haplogroups

• Known cases of language shift:

	Genealogy	mtDNA	Y
Finnish	Uralic	European	Partly Sibirian
Hungarian	Uralic	European	
Azerbaijani	Turkic	Caucasian	

 Probably many more such cases since language loyalty is known to have been very low in Northern Eurasia (Nichols 1998)

Eurasia

- All this evidence together suggests strong effects of EURASIA onto the distribution of many typological variables.
- Preliminary results from the World Atlas of Language Structures: 30 out of 100 test positive for EURASIA effects, after
 - controling for known universal correlations and
 - adjusting significance levels for accidental hits due to multiple testing
- and we keep finding more, e.g. in the case ~ word order model!

Overall conclusions

- Understanding typological distributions requires
 - developing explicit theories about explanatory factors:
 - 'match' factors: principles leading to universally uniform structural pressure in diachrony
 - 'spread' factors: effects of language contact and faithful inheritance within families
 - deriving statistical models from this and
 - testing these models against fine-grained variables in sufficiently rich databases (where 'rich' is not necessarily the same as big!)

- "Typology is about synchronic classification of languages."
 - *No, it is about measuring similarities of linguistic structures across and within languages and explaining them in terms of diachronic factors
- "Typology is functionalist."

*Only true for 'match' theories; not for 'spread' theories, and both are important!

• "Typology doesn't care about formal (mathematical) models."

* No, at least Distributional Typology relies on the mathematical modeling of similarities and of distributions.

• "Typology doesn't care about within-language diversity." \bigstar No, if we use the right set-up of variables and databases!