State of the art of the Automated Similarity Judgment Program

Søren Wichmann (MPI-EVA & Leiden University) & The ASJP Consortium

The Swadesh Centenary Conference, MPI-EVA, Jan. 17-18, 2009

Structure of the presentation

- 1. History of the ASJP project
- 2. Basic methodology
- 3. An assessment of the viability of glottochronology
- 4. Identifying homelands

1. History of the ASJP project

- Jan. 2007:
 - Cecil Brown (US linguistic anthropologist) comes up with idea of comparing languages automatically and communicates this to
 - Eric Holman (US statistician) and me. Brown and Holman work on rules to identify cognates implemented in an "automated similarity judgement program" (ASJP).
- May 2007:
 - Cecil Brown is in Leipzig and explains to me what the two of them have come up with and I begin to take more active part, adding ideas.
- Aug. 2007:
 - Viveka Velupillai (Giessen-based linguist) joins in.
 - A first paper is written up (largely by Brown and Holman) showing that the classifications of a number of families based on a 245 language sample conform pretty well with expert classification.

- Sept. 2007:
 - Andre Müller (linguist, Leipzig) joins.
 - Pamela Brown (wife of Cecil Brown) joins.
 - Dik Bakker (linguist, Amsterdam & Lancaster) joins, and begins to do automatic data-mining, an implementation in Pascal, and to look at ways to identify loanwords.
- Oct. 2007:
 - Hagen Jung (computer scientist, MPI, makes a preliminary online implementation).
 - I take over the "administration" of the project.
 - A second paper is finished about stabilities of lexical items, defining a shorter Swadesh list, etc.
- Nov. 2007:
 - Robert Mailhammer (linguist, BRD) joins.
- Dec. 2007:
 - Anthony Grant (linguist, GB) joins.
 - Dmitry Egorov (linguist, Kazan) joins.
 - Levenshtein distances are implemented instead of old "matching rules" identifying cognates.

- Jan. 2008:
 - Kofi Yakpo (linguist) joins.
- Febr. 2008
 - The two papers are accepted for publication without revision (in respectively Sprachtypologie und Universalienforschung and Folia Linguistica).
- April 2008:
 - Oleg Belyaev (linguist, Moscow) joins.
- 2008:
 - Papers presented at conferences in Tartu, Helsinki, Cayenne, Forli, and Amsterdam.
 - Work on the structure of phylogenetic trees, glottochronology, onomatopeitic phenomena, homelands.
- Jan. 2009:
 - Paper accepted for *Linguistic Typology*
 - The database expanded to hold around 2500 languages.
 Another 1000 or so in the pipeline.

2432 fully processed languages in the ASJP database (~1000 are in the pipeline)

6000+ Languages in the world

2. Basic Methodology

The database

- Encoding: a simplifying transcription
- Contents: 40-item lists

Transcriptions

- 7 vowel symbols
- Nasalization indicated but not length, tone, stress
- Some rare distinctions merged
- "Composite" sounds indicated by a modifier
- Vx sequences where x = velar-to-glottal fricative, glottal stop or palatal approximant reduced to V

Example of transcription: Havasupai (Yuman)

30. Blood	h ^w áte	hw~ate
31. Bone	t∫ija:k	Ciyak
51. Breast	XXX	XXX
66. Come	mijúwa	miyuwa
61. Die	pí:ka	pika
21. Dog	?aháte	ahate
54. Drink	θí:ka	8ika
39. Ear	smárk	smark
40. Eye	jú?	yu7
82. Fire	?a?ó?	a7o7
19. Fish	?itʃí:?	iCi7
95. Full	tim?órika	tim7orika
48. Hand	sále	sale
58. Hear	?é:vka	evka
34. horn	?kwá?a	kw∼a7a

Another transcription example: Abaza (Northwest Caucasian)

18 person	٢ʷɨʧˀʲʷʕʷɨs	Xw~3Cw"y\$Xw~3s
19 fish	pslatfʷa	pslaCw∼a
21 dog	la	la
22 louse	ts'a	c"a
23 tree	ts'la	c"la
25 leaf	bγ ⁱ i	bxy~3
28 skin	t∫ ^w az ⁱ	Cw~azy~
30 blood	∫¹a	Sy~a
31 bone	b℃i	bXw~3
34 horn	ʧ'∾iƳ∾a	Cw"~3Xw~a
39 ear	l i mha	l3mha
40 eye	la	La
41 nose	p i nts'a	p3nc"a
43 tooth	pits	рЗс
44 tongue	bz i	bz3
47 knee	∫amqa	Sy~amqa

Towards a shorter Swadesh list

Procedure:

- Measure stabilities of items on the Swadesh list
- Find the shortest list among the most stable items that gives adequate results

Measure stabilites

- count proportions of matches for pairs of words with similar meanings among languages within genera
- add corrections for chance agreement
- weighted means

Check whether it actually makes sense to assume that items have inherent stabilites by

 seeing whether the rankings obtained correlate across different areas (in this case New World vs. Old World is convenient)

louse	skin	new	root	cold
two	night	dog	claw	flesh
ear	leaf	sun	bite	neck
die	rain	fly	ash	say
water	blood	heart	red	burn
liver	horn	give	egg	tail
eye	kill	grease	eat	sand
hand	person	feather	who	that
I	knee	moon	hair	sit
hear	nose	yellow	dry	all
tree	full	white	smoke	many
fish	star	bird	not	know
name	come	head	seed	walk
stone	mountain	earth	woman	cloud
breasts	one	foot	this	belly
path	fire	black	round	big
tongue	we	mouth	long	swim
tooth	drink	green	stand	hot
you	bark	what	good	lie
bone	see	sleep	man	small

Items on the Swadesh 100-item list in order of descending stability

Stability and borrowability

Meaning	Stability	Attestations	Borrowings ["probable" or "clear"]	Proportion (%)
louse-H	42.8	43	2	4.7
louse-B		36	3	8.3
two	39.4	39	7	17.9
ear	37.2	40	2	5.0
die	36.3	47	6	12.8
water	36.2	37	1	2.7
liver	35.4	41	4	9.8
eye	35.1	38	2	5.3
hand	34.9	37	3	8.1
I	34.1	46	2	4.3
hear	33.8	39	0	0
tree	33.6	42	9	21.4
fish	33.4	37	4	10.8
name	32.4	38	3	7.9
stone	32.1	47	5	10.6
breasts	30.2	41	1	2.4

No correlation between borrowability and stability

Potential explanations

- Borrowability may be more variable for given lexical items across areas than stability and not be an inherent property of lexical items (similar to typological features).
- Borrowability is not a significant contributor to stability, at least as the segment constituted by the Swadesh 100item list is concerned.
- There are still far too little data on borrowability to be conclusive (the sample for studying stability was constituted by 245 languages, whereas we had only 36 language at our disposal for the study of borrowability).

Selecting a shorter list

Correlation between distances in the automated approach and other classifications as a function of list lengths

Automating the similarity measure

Levenshtein distances: the minimum number of steps—substitutions, insertions or deletions—that it takes to get from one word to another

Germ. Zunge \rightarrow Eng. tongue

tsuŋə tuŋə (substitution) tɔŋə (substitution) tɔŋ (deletion)

Or tongue \rightarrow Zunge

tɔŋ tɔŋə (insertion) tuŋə (substitution) tsuŋə (substitution)

= 3 steps, so LD = 3

Weighting Levenshtein distances

Serva & Petroni (2008): divide by the lengths of the strings compared. Takes into account that LD's grow with word length

ASJP:

- divide LD by the length of the longest string compared to get LDN (takes into account typical word lengths of the languages compared);
- then divide LDN by the average of LDN's among words in Swadesh lists with different meanings to get LDND (takes into account accidental similarity due to similarities in phonological inventories)

Results for classification

Two methods of evaluation:

- Looking at statistical correlations with WALS or Ethnologue classification
- Comparing tree with "expert trees"/expert knowledge

Performance of classification: a correlation with *Ethnologue*

MIXE-ZOQUE	0.9803	URALIC	0.7021
OTO-MANGUEAN	0.9793	TAI-KADAI	0.6955
INDO-EUROPEAN	0.9332	AUSTRO-ASIATIC	0.6475
ALTAIC	0.8552	HOKAN	0.6223
NAKH- DAGHESTANIAN	0.8515	KADUGLI	0.5725
MACRO-GE	0.8447	ALGIC	0.5477
MAYAN	0.8276	KHOISAN	0.5069
PENUTIAN	0.8062	TRANS-NEW GUINEA	0.5047
TUPIAN	0.7867	NIGER-CONGO	0.4404
TUCANOAN	0.7565	ARAWAKAN	0.393
NILO-SAHARAN	0.7475	AUSTRALIAN	0.3866
UTO-AZTECAN	0.7356	CARIBAN	0.3169
CHIBCHAN	0.7333	PANOAN	0.2733
SINO-TIBETAN	0.7318	AUSTRONESIAN	0.2553
AFRO-ASIATIC	0.7246		

- Disadvantages of automated method:
 - blind to anything but lexical evidence
 - not always accurate
 - has a swallower limit of application than the comparative method
- Advantages:
 - extremely quick
 - consistent and objective
 - provides information on the amount of changes, and therefore a time perspective

3. Assessing the viability of glottochronology (or Levenshtein chronologies)

 The assumption of a (fairly) constant rate of change can be checked by looking at branch lengths for lexicostatistical trees. Let's see some examples:

Tai-Kadai

Mayan

The ultrametric inequality condition

C (root)

The ultrametric inequality condition

Distance C-A = Distance C-B

Unrooted tree

Distance A-D = Distance B-D

Distance A-C = Distance B-C

Distance A-C = Distance A-D

Distance B-C = Distance A-D

A margin of error found by measuring the deviation from ultrametric inequality

Margin of error = BC - BD/[(BC + BD)/2]

Binned frequencies of margins of errors for ages of single pairs (Indo-European)

Margins of error for multiple language pairs as a function of LDND

x-axis: average of the greatest LDNDs within all sets of three related languages that are within the same 1% interval.

y-axis: the margin of error estimated as the average of the differences between the (logarithms of) the two largest distances for the set of triplets in the interval divided by the (logarithm) of the average of these two largest distances.

How to measure the age of a language group

- Take the age of the two most divergent languages? No, this would bias the result high.
- Take the average age of all language pairs? No, this would bias the result low.
- Make the ages part of the lexicostatistical tree and measure lengths from root (midpoint) to tips? No, this is only doable for a UPGMA tree, which is far from an optimal phylogenetic algorithm.

The last approach is taken by Serva and Petroni (2008)

Serva, Maurizio and Filippo Petroni. 2008. Indo-European languages by Levenshtein distances. Available at <u>www.arXiv.org</u> (and now published)

Comparing two Salishan trees

Our approach

- Find the midpoint in the tree of the language group and take the average modified Levenshtein distances of all pairs whose members are on either side of the midpoint.
- Calibrate with ages of known linguistic event.
- Find the LDND's at zero years = the LDND expected for dialects, and build that into the formula.

The revised glottochronological formula

Standard formula: log(SIM) = [2log(R)]T

New formula taking into account inherent variability within languages log(SIM) = [2log(R)] T + log(SIM')

SIM = observed similarity = 1-LDND SIM' = baseline similarity at time 0 R = retention rate T = time in millenia

R = .81 (slope of the line) SIM' = .68 (the intercept). So

T = [log(1-LDND)-log(.68)]/2log(.81)

Some examples of results

Arawakan	5403
Austronesian	5050
Cariban	3511
Chibchan	6146
Chukotko-Kamchatkan	4312
Dravidian	2959
Eskimo	1749
Germanic	1506
Hmong-Mien	5384
IndoEuropean	5981
Indo-Iranian	4281
Kartvelian	4893
Mayan	2669

Mixe-Zoque	3672
Muskogean	1812
Nakh-Daghestanian	5373
NW Caucasian	5313
Pano-Tacanan	5212
Romance	2255
Salishan	6097
Semitic	3274
Slavic	1187
TaiKadai	3604
Tupian	4887
Uralic	4873
Uto-Aztecan	4629

Outstanding problems

- Still not enough good calibration points, and they are hard to find.
- Ages greater than 6,000 BP cannot be trusted because randomness plays in (and ASJP classifications also typically break down beyond 6,000 years BP)
- Ages swallower than 1,000 show great variation from what's expected and cannot be trusted either.

4. Identifying homelands

The idea (going back to Vavilov 1926 in botany and Sapir's *Time Perspective in Aboriginal American Culture* of 1916) is that the area of highest diversity will tend to be the homeland.

Nikolai Vavilov (1887-1943)

Edward Sapir (1884-1939)

- A quantitative implementation:
 - For each language in a family, measure the proportion between the linguistic distance *L* and the geographical distance *G* to each of the other members of the family, and take the average. This produces a diversity measure *D* for the location where the given language is spoken.
 - The language with the highest *D* sits in the homeland.
 - Map the results by grouping D's into topographic color categories.

Supplement with reconstruction of ecological vocabulary, known migration histories, archaeology, etc. when available.

"Any one criterion is never to be applied to the exclusion of or in opposition to all others. It is a comfortable procedure to attach oneself unreservedly or primarily to a single mode of historical inference and wilfully to neglect all others as of little moment, but the clean-cut constructions of the doctrinaire never coincide with the actualities of history " (Sapir 1916: 87).

(cf. also critique of Vavilov by Harlan 1971)

HMONG-MIEN

CURRENTLY SPOKEN INDO-EUROPEAN LANGUAGES

Turkic (41)
 Mongolic (13)
 Tungusic (11)

ALTAIC

NIGER-CONGO

SINO-TIBETAN

Sino-Tibetan homeland According to Diamond & Bellwood (2003)

TAI-KADAI

Tai-Kadai homeland according to Diamond & Bellwood (2003)

AUSTRO-ASIATIC

Austro-Asiatic homeland according to Diamond & Bellwood (2003)

AUSTRONESIAN

AUSTRALIAN

Nichols (1997: 377): "Pama-Nyungan originated in the northeast of its range and spread by a combination of language shift and migration (...) (Evans & Jones 1997, McConvell 1996a,b). Northeastern Australia (southern Cape York), the likely Pama-Nyungan homeland, is a long-standing center of technological innovation (Morwood & Hobbs 1995), an area of deep divergence within Pama-Nyungan, and close to the Tangkic family, which represents a likely first sister to Pama-Nyungan (Evans 1995)."

Ruhlen (1994): Proto-Algonkian in the southwest of the family's extent

F. Siebert: PA in the area of the eastern upper Great Lakes (cited without reference by Ruhlen)

Denny (1991): PA around Upper Columbia River in Oregon and Washington

ALGIC

UTO-AZTECAN

Hopkins (1965): Columbia Plateau Fowler (1983: New Mexico Hill (2001): Mesoamerica

Fowler (1983)

CHIBCHAN

TUPIAN

Approximate homeland according to Dall'Igna Rodrigues (1958), based on the presence Of nearly all major subgroups of the family.

Homelands by tributaries to large rivers, not in the watershed itself. Some ecological explanation?!

0

 \circ

0.

 \bigcirc

Thank you for your attention!

Acknowledment: thanks to Hans-Jörg Bibiko (the one to the right) for implementing the homeland identification procedure in R

