		Bunaki
3		utál !
4		ina
5		itîy .
6		1524
7		firmadzan
8		dzian
9	Υ. Υ.	fil madzofo
10		dzofo
15		daofe neso tig
20		mi to tsa

LEGO, RELISH, and related initiatives

Jeff Good University at Buffalo jcgood@buffalo.edu

Grants background

- LEGO: NSF-funded project to build a "datanet" of interoperable lexical resources
 - -Based at Eastern Michigan University
 - -Satellite work at University at Buffalo
- -RELISH: DFG-NEH project to support trans-Atlantic standards harmonization
 - -DFG efforts at Nijmegen and Frankfurt
 - -NEH efforts at Eastern Michigan

Intellectual context

- Lexicons seem like good candidates for exploring data interoperability
- There is lots of variation in their structure,
 but most show a lot of overlap
 - -Organized around word entries
 - -Entries have a *form* part, a *grammar* part, and a *meaning* part
- -How do we migrate legacy materials?
- -What should new resources look like?

TEI Example

Lexicon formats

- -There are an enormous number of encoding schemes for lexical data
- -None of these has asserted itself as a general standard

```
<entry>
<form>
 <orth>competitor</orth>
 <hyph>com/petiltor
 on>k@m"petit@(r)
</form>
<gramGrp>
<pos>n</pos>
</gramGrp>
<def>person who competes.</def>
</entry>
```

```
\lx srapa1
\ps vt
\ge slap
\de slap with open hand
\dt 27/Aug/91
```

Lexicon diversity

- -Both LEGO and RELISH are focused on lexical resources for minority languages
- Major languages will always have extensive, dedicated support
- -More generalized support is needed for languages of less economic significance
- -Such languages are also less likely to have established lexicographic traditions
- -Work on major languages in Europe tends to be more relevant than work in the U.S.

LEGO

- -The bulk of the work of LEGO focused on legacy data conversion
- -This fed into general recommendations
- -Data sources
 - -Around twenty dictionaries (Michigan)
 - -More than 2500 wordlists (Buffalo)
- -What steps were required to convert them?
- What target format would allow for tractable conversion and interoperation?

LEGO: Eastern Michigan

- -LEGO lexicons ranged from relatively simple to quite complex
- -Basic work plan
 - Analysis of entries to find a consensus data model
 - Legacy format conversion (e.g., Word dictionaries to something structured)
 - Conversion to interoperation format (including mapping to GOLD)

LEGO: Buffalo

- -The Buffalo side of LEGO focused on the conversion of thousands of wordlists
 - -Dictionary: Form → Meaning
 - -Word list: Concept → Form
- Concepts are drawn from concepticons
- LEGO developed a unified concepticon

Lexicon entry

Wordlist entry

```
<skos:concept xmlns:skos="http://www.w3.org/2008/05/skos/">
   <lego:conceptId>1</lego:conceptId>
   <dc:description xsi:type="lego:default" lego:source="LWT"</pre>
       lego:sourceID="1.1" lego:label="the world" />
   <dcterms:references>
       http://wold.livingsources.org/meaning/1.1
   </dcterms:references>
   <dc:description lego:source="IDS" lego:sourceID="1.1"</pre>
       lego:label="world" />
   <dc:description lego:source="UW" lego:sourceID="2"</pre>
       lego:label="world" />
</skos:concept>
```

Unifying Usher-Whitehouse, IDS, and LWT concepts

Mocoví Lexicon

Source: Grondona, Verónica. 1991. Mocoví FIELD Database.

Entry: jin

Author Label(s): Verb Gold Concept(s): Verbal

Definition:-

English: cheat, lie

Spanish: engañar, mentir

Example -

(Mocoví) yim se-sa-jin-itj' (92-00-09) (English) 1pron neg-1S-CHEAT-2O "I don't cheat you, I don't lie to you."

(Spanish) 1pron neg-1S-ɛNGA?AR-2O "Yo no te engaño, yo no te miento."

Bibliographic Note -

English translation: Roberto Ruiz, Spanish translation: Roberto Ruiz

Bibliographic Note

Source name: Roberto Ruiz, Elicited date: 1992-07-26

Semantic Note

Character, Temperament, Manner, Behavior

Paradigmatic Variant : (da mare) ya-jin Author Token(s): Poss Pron Aff, 3rdSg Gold Concept(s): Affix, Third Person

Paradigmatic Variant: se-sa-iin-i?
Author Token(s): NegativeMood
Gold Concept(s): Negative Polarity

cf

Headword: ¿iini?

∕ ct

Headword: yajin

Entry: jin

Author Label(s): Verb Gold Concept(s): Verbal

Definition:

English: cheat, lie

Spanish: engañar, mentir

Example

(Mocoví) yim se-sa-jin-itf' (92-00-09)

(English) 1pron neg-1S-CHEAT-2O "I don't cheat you, I don't lie to you."

(Spanish) 1pron neg-1S-εNGA?AR-2O "Yo no te engaño, yo no te miento."

Bibliographic Note-

English translation: Roberto Ruiz, Spanish translation: Roberto Ruiz

Bibliographic Note

Source name: Roberto Ruiz, Elicited date: 1992-07-26

Semantic Note

Character, Temperament, Manner, Behavior

Paradigmatic Variant: (da mare) ya-jin Author Token(s): Poss Pron Aff, 3rdSg Gold Concept(s): Affix, Third Person

Paradigmatic Variant : <u>se-sa-jin-i?</u>

Author Token(s): NegativeMood

Gold Concept(s): Negative Polarity

cf

Headword: ¿ini?

cf

Headword: yajin

```
<entry id="_8590">
  <trait name="original-id" value="8590"/>
  <lexical-unit>
    <form lang="moc-Latn">
      <text>jin</text>
    </form>
  </lexical-unit>
  <sense>
    <grammatical-info value="Verb">
      <trait name="GOLDConcept" value="Verbal"/>
    </grammatical-info>
    <definition>
      <form lang="eng">
        <text>cheat, lie</text>
      </form>
      <form lang="spa">
        <text>engañar, mentir</text>
      </form>
    </definition>
    <example>
      <form lang="moc-Latn">
        <text>yim se-sa-jin-if' (92-00-09)</text>
      </form>
      <translation>
```

```
</form>
      <form lang="spa">
        <text>engañar, mentir</text>
      </form>
    </definition>
    <example>
      <form lang="moc-Latn">
        <text>yim se-sa-jin-if' (92-00-09)</text>
      </form>
      <translation>
        <form lang="eng-Latn">
          <text>1pron neg-1S-CHEAT-20 ''I don't cheat you...''</text>
        </form>
      </translation>
    </example>
    <note type="semantic">
      <form lang="eng-Latn">
        <text>Character, Temperament, Manner, Behavior</text>
      </form>
    </note>
    <relation type="cf" ref="_7421"/>
</entry>
                                                                      17
```

Kinds of interoperation

- -Various kinds of interoperation
 - -Character encoding (e.g., Unicode)
 - -Markup (e.g., use of XML)
 - -Structural (e.g., shared entry structure)
 - -Semantic (e.g., compatible categories)
- -LEGO and RELISH were mainly concerned with the last two of these

Structure: LL-LIFT

- -LEGO based its data markup format on Lexicon Interchange Format (LIFT) XML
- -But LIFT is very unconstrained, not allowing for data structure interoperation
- -Therefore, LL-LIFT was created
 - -Any LL-LIFT lexicon is also a LIFT lexicon
 - -Not all LIFT lexicons conform to LL-LIFT
 - Use of LL-LIFT is what allows a new lexicon to fit into the portal interface

Structure: LMF

- -The European side of RELISH had adopted Lexical Markup Framework
- This is a "meta-standard" for describing lexicon structures
- -LEXUS, developed at MPI Nijmegen, used LMF as a framework for its lexicons
- A key activity of RELISH was devising a LEXUS-LMF↔LL-LIFT conversion strategy
- -From a linguistic perspective, the differences are often trivial...
- -...but conversion can be time consuming

Semantic interoperation

- Semantic interoperation requires shared categories for describing data
- -Somehow the fact that *noun class* and *gender* may be the "same" must be encoded
- -The current standard solution
 - -Allow everyone to use their own labels
 - -Map the labels to a fixed list of categories
- Mapping can become hard—sometimes one finds hybrid categories, e.g., ge in MDF

GOLD and ISOcat

- The GOLD ontology provides one fixed category list—as well as a taxonomy
- -ISOcat is a general category registry, without much additional structure
- ISOcat contains the GOLD categories, and various others, and can be easily extended

Accusative Case (Concept)

http://purl.org/linguistics/gold/AccusativeCase

Thing

```
|_ Abstract
|_ Linguistic Property
|_ Morphosyntactic Property
|_ Case Property
|_ Accusative Case
```

Definition:

AccusativeCase in nominative-accusative languages marks certain syntactic functions, usually direct objects [Hartmann and Stork 1972: 3, 156; Crystal 1980: 11, 246; Andrews 1985: 75; Anderson 1985: 181].

Usage Notes

■ submit a usage note

Examples

submit an example

In Turkish, the nominative is zero-marked. Also, in this language nonspecific objects do not take the Language Code: ture accusative case.

2009-06-04 13:28:06

Hasan öküz- ü aldi Hasan- NOM ox- ACC buy- PST.3.SG Hasan bought the ox.

GilAndSueEllen

Data model vs. encoding

- -Most work has focused on XML standards
- But, that turns out to be a relatively trivial part of the process
- -More significant is the abstract data model
- A lexicon built around consonantal roots is very different from one based on "words"
- -Some lexicons contain texts or rich paradigms, also complicating the model
- A shared notion of the abstract "entry" is an important starting point

√bhw 1a [N and DTF 1.37 √bhw « couleur crème foncé »]

- bèhaw- K-d R T-ka [Imprt ibhaw R T-ka, LoImpfP -t-ibhaw- R T-ka] Ω a) [intr] be smoky grey, ash-colored * ê. gris, ê. de couleur cendre [K-d R T] [esp. of goats and camels] Ω b) [intr] be ugly * ê. vilain (laid) [R (less common sense)].
 - bæháw-æn A-grm = bæhæw-æn R Ω [partpl, MaSg] smoky grey * gris.
 - i n èrr bæhαw-æn T-ka T-md Ω [cpd nm, lit."of ashy neck"] large bustard sp. ** grande outarde sp. [ID: mainly *Neotis denhami* (no nape crest) but sometimes also *Ardeotis arabs* (nape crest); cf. √šγr, √jys].
 - bæháw-æt A-grm = bæhæw-æt R Ω [partpl, FeSg] smoky grey * grise.
 - bæháw-nen A-grm R Ω [partpl, Pl] smoky grey * gris.
- t-æbbæhæw-en T-ka Ω [nf] smoky grey, ashy color * gris, couleur cendre.
- á-bhαw T-ka, Pl i-bhαw-æn T-ka Ω [nm] grey or ashy-colored one * (un) gris, (un) de couleur cendre.
- t- \mathring{a} -bhaw-t R T-ka, Pl $t-\mathring{i}$ -bhaw-en R T-ka Ω [nf] grey or ashy-colored one * (une) grise, (une) de couleur cendre [e.g. of goat; for use as botanical term see √bhw 1c below].

Excerpt from Jeffrey Heath's Tamashek dictionary

What is the foundation?

- -The "entry" is a hybrid entity
 - -It is partly a way to present data on a page
 - It is based on linguistic notions
- For a large-scale interoperable system, one needs to a relatively stable concept
- -Building a platform around a notion like the sign or lexeme seems more appropriate
- Display requires extra work, but it's probably worth it

Information "loss"

- -General platforms cannot capture all the particulars of each language
- For LEGO, at least, some of the data in an entry was not properly converted
- It wasn't lost but relegated to a "note"
- Many standards have more or less powerful means to encode such "extra" data

Future projects

- Construct a data model for acceptable lexical resources with
 - -A reasonable baseline for publication
 - A "best practice" target
 - -Built-in extensibility
- Don't avoid existing standards, but don't let them stand in the way of a good product
- -Work from the linked data paradigm and think about connections to non-lexical data