Central Coordination
Dept. of English

Free University of Berlin
Gosslerstrae 2-4
D-1000 Berlin

Germany

ESF Eurotype

ESF Office

1, quai Lezay Marnésia
F-67000 Strasbourg
France

Working Paper 3

A Database System for Language Typology

Dik Bakker
Anna Siewierska

Theme Group 2: Constituent Order
Coordination: Anna Siewierska

Anna Siewierska

Department for General Linguistics
University of Amsterdam
Spuistraat 210

1012 VT Amsterdam

The Netherlands

phone: +31 20 5253860
fax: +31 20 5253052
e-mail: annas@alflet.uva.nl

Dik Bakker

Department of Computational Linguistics
University of Amsterdam

Spuistraat 134

1012 VB Amsterdam

The Netherlands

+31 20 5252070

dik@alflet.uva.nl

1. Introduction

One of the means of collecting cross-linguistic data, an activity which by
virtue of the nature of the EUROTYP project we are all currently involved in,
is via a questionnaire. Most linguistic questionnaires are aimed at eliciting
both primary data, i.e. actual language utterances, and analytical data, i.e.
statements about the grammatical characteristics of languages. In the course
of the last year we have developed a scheme for processing, storing and
analyzing analytical data. The scheme has been elaborated on the basis of a
questicnnaire on word order compiled by the constituent order group. However,
significantly, it is not dependent on the word order or any other linguistic
domain.

The proposed scheme is intended to facilitate computer data entry and the
analysis of linguistic data by means of generally available and specially
developed programs. It constitutes a powerful analytical tool which can be
easily applied to any linguistic domain. In order to use the system all that
is required is that the linguistic domain under investigation be structured
in a particular variable - value format and transformed into a normal computer
readable textfile. Once this is accomplished, all the analytical procedures
can be applied automatically without further technical demands on the
linguist. The linguist "only" needs to apply her/his linguistic knowledge and
expertise in reducing the number of possibilities open to the computer
programs or alternatively in selecting from a body of potentially relevant
linguistic facts those which are of actual interest. A global outline of the
- fully interactive - computer system is depicted in figure 1.

QUESTIONNAIRE EDITOR

DOMAIN
DATA
OTHER
ONVERSION
& FORMATS
DATA
BASE
4 v
DATA BASE SYSTEM RULE INFERENCE SYSTEM

figure 1

Reading this scheme from top to bottom, there ig first a nodule for entering
the questionnaire data into the computer according to a special format to be
discussed below. A second medule integrates these data into a centralized data
base, that may contain data on other linguistic domains than the one of the
user. With that same module one may transform the format of the data to that
of other, coften used computer programs, e.g. for statistical analysis. With
a third program, the centralized data base, containing the user's data, may’
be searched. With the bottom module, the data may be analyzed according to
non—statistical methods, such as the determination of implications, and other
strategies of linguistic data analysis.

since the structure of the linguistic domain in terms of variables and
values constitutes the input to the analytical procedures, before presenting
the various modules of which the system is comprised, we will first describe
the required format. After introducing, in section 2, some of our innovations
to the standard variable - value design, in section 3 we will describe the
formal conventions used in the textfile representation of this design. Section
4 will constitute the body of the paper- 1t will begin with a’ brief
presentation.of the overall organization of the computerized.data base and the
set of computer programs supporting it. The following subsections will
describe in more detail the function of each of the modules of the overall
system. Special attention will be devoted to the analytical possibilities
incorporated into the inferencing program which has been developed on the
basis of the cumulative achievements of typological research over the last
decades.

2. The structuring of variables and values

Any linguistic dimension may constitute a variable. For instance when dealing
with word order one is likely to set up variables such as: the order of the
subject, object and verb in declarative clauses; the position of the question
word 1in wh-questions; the location of the negative marker; the order of
sequences of nominal modifiers etc. Values are fixed points on the linguistic
dimension represented by the variable. Typically each variable has a finite
set of values. Thus in the case of the variable order of the subject, object
and verb in declarative clauses the values could be any of the items in (a)
through (f) below.

(1) v1 Declarative order of 5, V & 0
SVO

sov

vsOo

VOS

oSV

ovS

mo O ow

of the four types of variables that are usually distinguished in data
analysis - nominal, ordinal, interval and ratio - the lowest on the scale,
nominal variables, are by far the most common in linguistic research. (1) is
a good example of a nominal variable [see note 1].

The structuring of a linguistic domain in terms of variables and values can
be achieved in numerous ways. What constitutes a variable and what a value is
purely up to the linguist, and the theoretical framework that has been
adopted. For instance, instead of the variable order of the subject, object
and verb 1in declarative clauses, one could have a series of variables
stipulating the possibility of occurrence of each of the six transitive

2

orders, with yes/no as values. Or instead of terms such as subject and object,
one could use semantic roles, case marking, constituent structure categories
etc. .

When working with a questionnaire part of the structuring of a linguistic
domain with respect to variables and values is already incorporated into the
questionnaire. The questions in the questionnaire correspond to the variables,
in some way or another, and the answers to the questions reflect the possible
values. However, given the impossibility of foreseeing all the linguistic
dimensions that are relevant for a particular domain in compiling a
questionnaire and the necessity of taking into consideration the psychological
impositions on the informants answering it, there is not always a one to one
relationship between the questions in a questionnaire and the variables that
one finally sets up to store and process the results. Therefore a certain
amount of restructuring is typically required in the establishing of a
variable - value format appropriate for data storage.

In designing a scheme for the capturing of ‘linguistic data we have tried
to cater for the specificity of language data and the analytical methods used
by linguists. We have thus enriched the simple variable - value format by
several conventions which together enable the representation of language facts
in a.way closely corresponding to the actual practice of linguists. Each of
these conventions will be discussed in turn below [2].

2.1 Multiple values

In a usual variable - value scheme consisting of a variable with a set of
values, only one of the values may be chosen for each language. This is,
obviously, much too restrictive for the representation of linguistic data.
Adherence to such a system would not only lead to a proliferation of
variables, but more importantly to the loss of significant generalizations.
In the system that we have developed any language can have multiple values for
any variable. Thus, for example, for the variable form of impersonalizing
strategies most languages select at least three of the values in (2).

(2) V32.1 impersonalizing strategies -
ImpOne

ImpMan

ImpPeople

ImpSomeone

Imp2ndsg

Imp3rdsg

Imp3rdpl

Impistpl

ImpRefl

InpSpecial

ArgOmission

ImpPass

=R e g Hh (D E:LO [o]

There is no principled upper bound on the number of values that a language may
take for a given variable. So far the maximum number of values assigned to one
language for a variable in the word order data base is eleven. The language
which required so many values was Lezgi and the variable in gquestion was
adverbial cases distinguished. We have found that most of the variables in the
word order data base require multiple values for some language or another.

2.2 Compound values

It is sometimes the case that two values of which one ig relevant for language
X and the other for language ¥ must co-occur in a third language Z. Such a
situation can be handled by means of syntagmatic conditions (see section 2.9
Alternatively, it can be dealt with by compounding the two values in question
into a new complex value. When more than two values are involved and they can
apply in several different combinations, this second alternative may be the
more attractive. Consider, for instance, the case of the pragmatic
restrictions underlying OSV order. On the basis of the responses to the word
order questionnaire the major pragmatic conditions underlying the OSV pattern

in the languages considered so far are as shown in (3).

otopic Sfocus
Otopic Vfocus
Otopic Xfocus
Ofocus

Sfocus

Ocontrastive
Scontrastive
Ocontrastive Sfocus
Ocontrastive Xfocus

(3)

QO O DR

The above pragmatic conditions can be captured directly by means of a set of
values corresponding to the list in (3). On the other hand, one could also
have a reduced set of values, as in (4), and whenever necessary apply the
option of compounding the simple values into complex ones.

(4) Otopic
Sfocus
vfocus
Xfocus
Ocontrastive
Scontrastive

hOo Ao oW

The compounding option is particularly handy in the early stages of processing
questionnaires. It is not always possible, or perhaps even not desirable, to
postpone the task of restructuring a linguistic domain in terms of a variable
- value format until all the completed questionnaires come in. Therefore often
one does not have a comprehensive list of values for each variable to start
off with. The possibility of compounding simple values into complex ones, is
one of the "painless' means of expanding the value list.

2.3 Complex values

Wwe have just seen that values may be combined. There may also be "dissected"
so to speak. Many of the values used in the word order data base are complex,
i.e. they consist of two or more linguistically identifiable segments. Thus
the value SVO can be analyzed into S, V and 0, the value singular—dual—plural
can be split up into singular, dual and plural etc. A formal method has been
developed which internally analyzes such complex values, provided that their
sub-parts are predefined, and that a set of rules is available for their
structure. This allows one to generalize over values and regroup them onto
sub-sets such as vo/ov, Sv/vs, Vinitial, singular/non—singular etc. See
section 4.4.8.1 for more on this.

2.4 Scales for values

When a given language selects more than one-value for a particular variable,
it may be the case that the values in question can be assigned a preferential,
dialectal, stylistic or other ranking. For example, many languages display
several possibilities as far as the placement of adverbials of setting is
concerned. Yet in most the initial or final position in the utterance is
clearly favoured above clause internal placement. To give another example, in
standard Finnish it is not possible to question the subject of a subordinate
clause. In colloguial Finnish, on the other hand, such questions are
grammatical. Yet another case in point, in English one may be used as an
indefinite pronoun. This usage is, however, associated with the formal
language. :

Scalar values reflecting preferences or dispreferences such as the above
may be directly appended to values proper, leading in fact to complex values.
In Matthew Dryer's data base, for example, a preferential order is denoted by
values in upper case and a dispreferred one by lower case (see Dryer 1987).
One can imagine various other systems. However, since more often than not many
combinations are possible between variable values and scale values both
theoretically and practically, directly combining the two would lead to
obscuring the values proper. This in turn would complicate any analysis of the
data by rendering necessary a large number of reinterpretation and recoding
operations. The alternative that we have adopted is that of separate scale
values which may be treated independently of the variable values themselves.
The advantage of this is that the scale values can be taken into consideration
only when they are considered to be relevant, for example, when determining
details of combinatorial possibilities and not the very existence of those
possibilities in a language.

In the word order data base, so far the following scales have been used:

(5) pPreference=[oblig, pref, non_pref, rare]
Restrictive=[fav, restr]
Style=[collogial, literary, dialectic, formal, spoken, written]
Obligatory=[obl, opt]

The scales can be applied in combination. Thus, for instance, phrasal
discontinuity in Russian has a value on the stylistic scale as colloguial, and
on the preferential scale as pref(erred). :

2.5 Conditions on variables and values

Perhaps the most far reaching innovation incorporated into the described
variable - value scheme from the point of view of data storage is the
possibility of stating conditions on variables and values. Two types of
conditions have been catered for, paradigmatic conditions on variables, and
syntagmatic conditions on values. The paradigmatic conditions capture the
relevance of particular variables for a given language. In doing so they
reflect the potential dependency relations obtaining between variables and
thus help to determine what may and what may not be in a grammar of a
language. To give a simple example, in the word order data base, if a language
has no articles, then the next potentially relevant variable is the form of
the demonstrative. This is a reflection of the fact that in many languages
articles have evolved out of demonstratives, and that often demonstratives
fulfill some of the functions of articles.

Paradigmatic conditions may also be used to capture a relationship between a

5

particular variable and the set of values in another variable, restraining it
to a subset, in case of some specific score on the higher variable.

Syntagmatic conditions describe the circumstances under which the
phenomenon coded by the variable concerned occurs in a language. The need for
expressing such conditions is obvious: no matter how finely we structure our
linguistic domain by means of variables and values, we cannot hope to capture
in just this manner all the existing distinctions found in languages.

Syntagmatic conditions can refer to any type of linguistic facts: lexical,
semantic, categorial, morphological, structural, pragmatic, textual etc. The
only restriction that has been imposed on the syntagmatic conditions is that
they must be stated in terms of boolean expressions over variable-value pairs
[3]. In most cases this can be done quite easily. By way of illustration, let
us go through a couple of actual examples.

In Upper Sorbian yes/no questions may optionally contain either an unbound
question particle, namely hac or the clitic 1i. Given the variable and values
specified in (6), the nature of the relevant particles can be stated as a
syntagmatic condition on each of the two values as shown in (6).

(6) V14.2 boundness of_Q—particle in yes/no questions
a NB [opt, (Qprt=hac)]
b. Cl [opt, (Qprt=1i)]

The factors underlying the use of the so called Saxon genitive which
preferentially occurs only with short animates may serve as an example of a
potential semantic condition. E.g.

(7) v21.1 structure genitive
a. Adp
b. GenSuff [pref, (Semantic_Category_Gen:animate AND
Weight_ Gen=short)]

In (8) there is a complex syntagmatic condition specifying that the
postposition of an adjective in English is obligatory when the adjective takes
its own complement (e.g. man proud of his son), but optional when such an
adjective modifies an indefinite noun and is itself modified by an intensifer
(e.g. a very easy name to remember vs a name very easy to remember) .

(8) v20.5 order adjective N
a. AdjN
b. NAdj [[obl, (Structure_ndj=Adjcomp)],
[opt, (Structure Adj=IntAdjcomp AND
Semantic_Category_NP:indef}}]

And finally in (9) we have two structural syntagmatic conditions accompanying
the distinct pragmatic requirements underlying the occurrence of 0SV order in
Finnish.

(9) v4.6p pragmatic restrictions osv
a. OtopicSfocus (Pattern=X0SV)
b. OctrVfocus (Pattern=0SVX)

Just as scale values, syntagmatic conditions could be built into the value
proper. However, given their often rather idiosyncratic nature, proliferation
of variable values would be even greater than in the case of scales. When the
syntagmatic conditions get too complex, it may be desirable to posit an
additional variable or variables catering for the factors that reoccur in the

syntagmatic conditions on some value in several of the languages.

For any variable, scales and syntagmatic conditions may be combined, as in
the example (8) above. This provides a three-dimensional scheme for the
representation of linguistic information, where the values on these dimensions
- variables; scales; conditions - in themselves may be compound and complex.

Having outlined the possibilities that are available for the structuring
of variables and values in our scheme, we now turn to the description of the
formal representation of the format that has been adopted.

3. The formal structure of the DSL file

The variable - value format, which from now on will be referred to as the
Domain Structuring Language (DSL), is intended to structure the data from a
questionnaire, to drive computer programs for entering the data, and finally
to serve as the input for analytical computer programs. In order to fulfill
these functions, the data must be structured in a formal way. Therefore the
following discussion will be somewhat technical. ‘

A DSL file defining the characteristics of a linguistic domain begins with
a specification of the domain under analysis and an enumeration of the scales
and the type of missing values that will be used, as in (10) [4].

(10) a. Word Order Data, Version 1.0 Nov91
b. Scales: Preference={obligatory, preferred,
non_preferred, rare)
Restrictive=(fav, restr) ’
c. Missing values: (not_known, not_clear, not_present)

The body of a DSL file consists of a set of domain variable descriptors, where
each descriptor denotes a separate variable. The structure of a specific
domain variable descriptor is shown in (11).

(11) a. variable name
b. Reference
c. Variable label
d. Parameters
e. Value set

The variable name is a short, unique indication for the variable for quick
reference, not necessarily mnemonic. In the DSL file of the word order data
base the variable names consist of the letter V (for variable) followed by a
real number, e.g. V2.1, V14.2, Vv21.1 etc. The first digit of the number
identifies the sub-domain to which the variable refers. For example, all
variables beginning with V2. concern intransitive clauses, those beginning
with V14, refer to yes/no questions, and those beginning with V21. involve
possessive constructions. The second number is sequential. Needless to say,
one can adopt any other means of naming variables.

The reference is an (optional) indication to which questions in the
questionnaire the variable relates. The value of a variable may be derived
from - the interpretation of the answers to - one or more questions or other
information sources. Thus the reference is basically a convenience for
checking the original source of the data in the questionnaire.

The variable label is a specification of the meaning of the variable, for
instance, order of the possessor and possessed, inflectional cases on
pronouns, existence of impersonal passive etc.

The parameters specify whether the variable in question will be

characterized by means of scales, compound values, paradigmatic and/or
syntagmatic conditions, and whether it is to be considered as nulti-valued
and/or open. The parameter open means that values not included in the value
set (see pelow) can pe added. It is jmportant to note that whenever any of
these options are to be activated for a variable, this must be made explicit
independently for each variable.

The value cet is the 1ist of values for the variable. There are no & priori
restrictions on the number of values for 2 given yvariable. Nonetheless if
there should end upP peing as many values aS there are 1anguages one would be
well adviced to reconsider the viability of the variable in question.
gome of the above features of the variable descriptor are illustrated in (12).

(12) v2.1
Q2.1 - 02.4)
Main bare intransitive orders
parameters:(multi=2, scale:Preference,
syntagmatic_condition),
a. Siv
b. VSi

The parameters given here should be interpreted as follows. 'multi=2' means
that to a maximum of two values (in this case in fact: all) may be chosen from
the list of predefined values. TO any one of them 2 value from the scale
'preference' may be associated. The presence of the 'syntagmatic_condition'
parameter allows a syntagmatic condition to be associated to any value chosen
for the yariable for some language- Recall that syntagmatic conditions are
framed in terms oOf boolean expressions over yvariables and values as
established in section 2.4, For variable yv2.1 we may end up having the
following complete value description for some specific 1anguage L:*

(13) v2.1= Vsi - [(Preference:cbligatory} i
((Pos1=expletive} OR (Pos1=adverb) OR
(Semantic_Category_S=indef)}] / SiV

This should be interpreted as: in intransitives of L the subject gollows the
main verb as the obligatory order in case there is an expletive or adverb in
the first position and also in case the subject 18 ijndefinite. 1n all other
cases the order is subject—verb.

There is no paradigmatic condition or compound parameter in (13). The way
paradigmatic conditions are represented 1s shown in (14), where the'condition
states that if the value none 1iS chosen, i-.€- if a languageé has no caseé
marking on nouns, all the following yvariables concerning nominal case narking
should be considered as not relevant, and the next variable to be regarded is

v29.9, the variable pertaining to case marking of pronouns.

(14) v29.8a
(029.3, 029.4)
nominal cases
parameters= (multi=10, syntagmatic condition,

paradigmatic_condition [V29.Ba=none > v29.91)

(15) illustrates the compound parameter which here gpecifies the possibilit:

+hough not the necessity, of combining any three values into 2 compound valu

(15) v28.1
(028.1)
agreement categories of the adjective
parameters=(compound=4, multi=4, syntagmatic_condition)

a. no Adjective agreement
b. Number

c. Gender

d. Case

e. Definiteness

f. Class

Note that if for a given language there are syntagmatic conditions on any of
the values, it may be preferable not to combine the particular values, unless
the same syntagmatic conditions hold in each case.

When all the decided upon variables are given their appropriate variable
descriptor format, the DSL file is complete. What now remains to be described
is how such a DSL file can be used.

4. Computer programs for typological research

The DSL file is the backbone of a set of computer programs developed for
entering, storing and retrieving analytical linguistic data, and performing
analyses on them. The whole scheme takes the form given in figure 2. The
scheme is interactive: all programs are run from the screen, in a dialogue
with the user.

5PSS
format

SPSS

DBMS

DBL LINFER

figure 2

QTP is a data entry program, to be used for entering the data coming in from
questionnaires.
TRANS may be used to integrate the data stemming from a guestionnaire on a
certain subdomain into a central data base. It may also be used to transform
these data such that they can be handled by some widely available
applications.
DBL is the program that explores the central data base.
LINFER contains several methods of data representation and analysis often used
in the field of language typology.

Tn the following sections, these programs will be discussed in more detail.
This will be done from the perspective of their use in typological research.
Technical details on them are to be found in appendix E.

4.1 The QTP data entry program

The QuesTionnaire Processor program (QTP) is meant as an instrument to enter
questionnaire data into the computer in a systematic and controlled way, and
ctore them in a domain dependent data base according to a unified format. The
program itself ig fully domain independent. It is applied to the previously
constructed domain specific DSL file. The QTP program loads the DSL file, and
checks its consistency [5]. Then questionnaire results for a user determined
set of languages may be entered via keyboard interaction. When one starts the
QTP program, after choosing the domain and a specific language for which there
are, or should be, data in that domain, say Abxaz, the following menu is
presented on the screen.

(16) qguit Abxaz

. options

. save changes to data base
add new values

. correct existing values
inspect values

Ul W N = O
. . .

One now may proceed to enter data via option 3. The program will prompt the
user for values for domain variables in the hierarchical order in which they
are defined in the DSL file. All parameters for a variable will be taken into
consideration, as well as the values for any higher variables, that have
already been specified for that language before, in the same session, Or
during a previous entry session, since they may play a role in paradigmatic
conditions. Variable after variable will be presented in the following way:

(17) Language: Abxaz
Variable: vi8.2
Reference: (= Q18.2)
Lable: location of negative
synt Cond: Yyes
Maximum: 4 values

initial

final

SVOneg

posthAux

fusedwithAux

preVv

postV

. other

MO D QO OWR

10

The user may choose one value for the variable (in the case of a multi-valued
variable: a number of different values to the maximum of the multi parameter)
by typing the corresponding letter. In case-of a scale being active, the user
is prompted for an (optional) scale value. The same goes for syntagmatic
conditions. When a variable is specified for the parameter open in the DSL
file, there will be an extra entry in the list of values reading 'z. other’,
as in (17). When, in such a case, the user types a 'z' then any value may be
entered for the variable. It will be automatically added to the list of values
for that variable in a dynamic way. This dynamism implies that, as long as
there is at least one language in the data base that has the value concerned
for that variable, it will be presented on the screen with the predefined
values for any language to be coded after. If it is removed from the data
base, it will disappear from the menu presentation altogether. In order to
attain consistency in the terms and concepts used in a certain domain, an
alphabetical list of abbreviations and definitions may be compiled on a file
by the user (this is the ABBREV file in figure 2). It may be consulted and
browsed through at any stage during the execution of the program.

In presenting the successive variables on the screen, prompting the user
for values, the program is sensitive to the paradigmatic conditions specified
in the DSL file. This means that series of variables may be excluded from
being presented on the screen at all. In such cases, the program will
automatically assign a 'not relevant' value to these variables. Whenever a
variable is presented on the screen, the user always has to provide a value.
If it is not known, or it is not in the set of predefined values, the user may
type a question mark (?), which is the system's built in missing value. The
question mark may always be replaced at a later stage by a 'real' value.

When finished with some variable, the complete value set is added to the
domain specific data base file for the language under consideration. One can
then proceed to the next variable.

At any stage, the user may interrupt the entering of data, or shift to
another language. The program will automatically continue with the variable
next in the hierarchy on the ensuing occasion.

Data already entered may be inspected by choosing the 5. option in the menu
in (16) and also modified by choosing the 4. option. If a modification, as a
consequence of paradigmatic conditions, has implications for data already
provided for lower variables for the language concerned, the program will
notify the user of this. The data base should then be reorganized in the
necessary way.

The end product of the application of the QTP data entry program is a QTP
data file where all the variables with the specified values, syntagmatic
conditions and scales for all the languages are stored. It is this QTP data
file which serves as the input to the statistical and analytical computer

prograns.

4.2 TRANS: data transformation

TRANS is an interface module which has two functions. The first is the
integration of the data stemming from the QTP program into a centralized data
base the format of which is the same as that of the QTP files. This data base
may contain data stemming from other domains and sources. Since all the domain
specific QTP files are assumed to be structured in the same way, the TRANS
interface provides for the possibility of inter-domain retrieval and analysis.

The second function of the TRANS interface is to transform the QTP data
into a format readable by SPSS, one of the most widely available statistical
packages. It recodes the alfanumeric value labels of the QTP data into the

11

numeric ones preferred by SPSS, and organizes the data into a rectangular data
matrix with the languages as the cases. In this transformation, part of the
advantages of the DSL language are, of course, lost, such as the multi-value
option, and the separation between values, scales and conditions. For that
reason, some ad hoc provisions have been built into the TRANS program. For
example, scale values may Dbe optionally appended to the variable wvalues
proper, giving complex value types such as 'AdjN obl' or 'NAGj opt'.
Syntagmatic conditions, however, cannot as yet be handled at all. Multi-value
variables may be treated in two ways. By default, they are split up in as many
SpSS variables as is necessary for the highest actual number of values to be
represented. For example, when a variable Vn was defined as 'multi=5' in the
QST file, and actually has 4 values as a maximum for some language, there will
be four variables Vn_A through Vn_D in the SPSS file. A language that has only
2 values for Vn will have missing values assigned to its Vn_C and Vn _D. If
splitting the values over a set of sub-variables is thought to be undesirable,
another possibility is to concatenate them, as in the case of scale values.
In order to maintain consistency, the values are concatenated in alphabetical
order. The effect of this value transformation is that it changes the variable
concerned from coding a mixed type to coding a type. Under this option, scale
values are suppressed.

For ease of use, TRANS provides a complete SPSS/PC setup, and adds the
original variable names and values as labels; this greatly improves the
readability of the SPSS output. Appendix D gives an example of such a SPSS set
up file.

4.3 The DBL linquistic data base

For querying and related operations a separate program - Data Base on
Languages (DBL) - has been developed. This program has been constructed around
two sets of data. The first is the file that results from the integration of
several domain specific QTP files, i.e. the just discussed centralized data
base brought about by the TRANS program. The second is a computerized version
of Ruhlen's (1987) language classification, represented in the form of a
genetic tree with 18 major phyla, 1825 intermediate sub-phyla and groups, and
5273 languages for their terminal nodes [6]. These two sets of data are
connected into a combined data base. Using the DBL program, this combined data
base may be explored in two ways: by searching and by sampling. For the
sampling option we refer the reader to Rijkhoff et al. (1992). The guerying
will be discussed directly below.

4.3.1 Querying the DBL data ase

gearches through the data base may be made via the genetic classification as
reflected in Ruhlen or via the language data as such. Using the genetic
approach one may interactively browse through the genetic trees picking out
names of phyla and subphyla. This may provide the user with the languages in
their genetic relationships to other languages and language groups, typically
leading to the type of screen display given in figure 3 below. Per node in the
tree the data that are available with respect to the dependent languages may
be retrieved. Figure 4 gives a (simplified) example of such a survey.

12

Caucasian
North
Northwest

Abxaz-Rbaza

Abxaz

Sov/free
post
NAdj/AdIN
GN

NumN
RelN

BABEL
Indo Hittite
Indo_European
Germanic
West
Continental
West
putch

svo/v2
prefprep
AdjN

GN

NumN
NRel

figure 3

Group: Germanic

Number of sister nodes: 8
Descending nodes: 26
Descending languages: 16
Information on: 7

svo=3 / svo/v2=2 [/ v2=1 / SOvV=1
prep=6 / prefprep=1

AdjN=7

GN=7 / NG=5

NumN="7

NRel=7 / RelN=1

figure 4

13

adopting the language data approach as represented in the QTP file one can
make gueries consisting of boolean expressions over variables and values. In
these expressions, the same conventions are used as for the representation of
syntagmatic conditions in psL file. An exanple of a simple query is given in

(18); a more complicated one 1S given in (19).
(18) (v0.1=SO0V OR v0.1=50v/free) AND V0.2=post
abx bas chu dar did geo kom lez

(19) (((v0.1=S0V OR v0.1=sov/free) AND v0.2=post) OR
({V0.1=VSO AND v0.2=prep))

abx bas bre chu dar did geo kom lez wel

Query (18) selects the languages with basic SOV and sov/free word order that
have postpositions. (19) selects these languages and those that have basic VSO
order and prepositions.

It is important to note that scales and conditions may not be included in
queries. They may, however, be reproduced in displays-

4.4 The LINFER inferencing program

LINFER is the fourth module of our scheme. It has been developed specifically
for the analysis of analytical linguistic data. AS mentioned earlier, the host
of computer programs that are commercially available for the analysis of data
organized according to a scheme of variables and values, such as SPSS, SAS or
pMDP, Jjust to name a few, do not provide all types of analysis procedures that
work in language typology calls for. They do contain facilities for both data
description (cf. frequency counts and crosstabulations} and analysis (cf.
techniques such as Cluster Analysis, see pelow) that may pe of great help when
trying to come to grips with the host of secondary linguistic data resulting
from a questionnaire. However, in order to apply these techniques, especially
the more sophisticated ones, one often has to resort to recoding, reorganizing
or reinterpretation of the data. Furthermore, as has already been observed
above, many statistical techniques presuppose-data types that are of 3 higher
order than the nominal type of data that is usually employed in the field of
language typology. By contrast, the LINFER program that we offer directly
incorporates several of the methods and quantities that have been introduced
into the field of language typology bY Greenberg and subsequent scholars. The

most important of these will pe presented below.

4.4.1 Simple implications

probably the most well-known type of rule in the field of language typolodi
is the implication; deriving implications is the basic step in the inferenct
process puilt into the LINFER program. In the first pass of this process; the
user may select a set of variables from the QTP type data pase. The LINFE
program will derive any simple implications existing petween the selecte
variables. One may select any sub-set of the var '
including the whole set. The only variables that cannot be selecte
for which only one value is relevant for the languages in the sample-
program will automatically disqualify such variables.

In the context of the program, implioations take the following form:

d are thos
Tt

14

(20) Vi=val_1 -»> V2=val_2 , < Fr=x, Fa=y, Fc=z, Pv=p, Pw=q >
where:

V1 and V2 are variables from the subset chosen;

val 1 and val_2 are values for V1 and V2 respectively;

X, ¥, 2z, p and q are values between 0.0 and 1.0; '

Fr is the fraction of languages in the sample for which the implication
is relevant, i.e. that have value val 1 for variable Vi;

Fa is the fraction of the relevant languages for which the implication
applies; “

Fc stands for what we call coverage, i.e. the fraction of languages for
which the conclusion is relevant, but not the premise;

Pv is the chance that a language has V2=val_2, given the

number of different values for VZ2;

Pw is the chance that a language has V2=val_2, given the

overall distribution of values for V2

The meaning of the F and P rates can be more easily appreciated on the basis
of a concrete example. Let us assume that in a data base with data on 30
languages there are 20 languages that have Vi=val_1. Of these 20 languages 18
also have V2=val 2. In addition there is another language (not one of the 20)
which also has V2=val_2 but it does not have Vi=val_1. Given the above, the
F rates will be as follows: Fr=0.667 (=20/30), Fa=0.9 (=18/20), and Fc=0.947
(=18/19), respectively. In case there are 5 different (non-missing) values for
V2 for the languages in the data base, Pv will have value 0.2 (=1/5). If all
30 languages have a value for V2, then Pw - i.e. the real chance on a language
having V2=val 2, is 0.62 (=18/29).

By means of the F and P rates we thus quickly learn how potentially
interesting the particular implication is [7]. Either of the phenomena covered
by the implication may be widespread or they may actually occur only in a
handful of languages. Any implication that has Fa=1.0 is an absolute universal
[8]. Though an absolute universal is of interest irrespective of how many
languages actually display it, it may be desirable to know to what extent the
two phenomena in guestion actually do co-occur, i.e. how often the phenomenon
referred to by the conclusion is found without that denoted by the premise.
Consider, for instance, the well known simple implication in (21)..

(21) v28.3=Gender -> V28.3=Number n=24
<Fr=0.55, Fa=1.00, Fc=0.73, Pv=0.25, Pw=0.87> Absolute

lgs: alb bul bye cat clg cze dan dut frs ita 1lit mac mal
nor pol rus scr slva slve spa swe ukr uso wel

The implication in (21) - in words: if the demonstrative agrees with the noun
in gender, then it also agrees with the noun in number - holds for 24 of the
44 languages currently in the word order data base, i.e. for over just half
of the languages (Fr=0.55). There are no languages which display gender
agreement of demonstrative and noun and which do not simultaneously exhibit
number agreement between the demonstrative and the noun. Consequently, the
implication holds for all the languages manifesting the premise. There are,
nonetheless, 7 languages in which the demonstrative agrees with noun in
number, but not in gender, i.e. languages that have the conclusion, but not
the premise. This leads to a Fc value of 24/31, or 0.73.

Pv is 0.25 (i.e. 1/4) since there are 4 different non-missing values for
variable V28.3 (noDemAgr, Case, Gender and Number); Pw is 0.87 (i.e. 32/37)

15

since 33 out of 38 languages with non-missing values for Vv28.3 have value
Number.

The procedure that computes implications is parametrized to the extent that
it will only retain the implications with F values above a certain user
defined minimum. Thus we may be interested only in implications that hold for
all the languages which exhibit the premise and the conclusion (minimum Fa is
1.0). Or we may be more liberal and allow for implications that hold for only
90% or 75% of the languages for which the premise and conclusion are relevant.
or we require that any implication should be relevant for at least 1 in 4
languages (Fr=0.25).

The implications computed by the LINFER program may be ordered according
to several criteria: in terms of any of the three F values, where the
implications with the highest of the F value selected will be placed on top
of the list and implications with successively lower F values will follow, or
in terms of either the premise or conclusion of the implication.

Often, especially with large sets of variables, and relatively low minima
for the Fa and Fr values, quite large numbers of implications may result from
this procedure, say several hundreds or even thousands, the vast majority of
which may be without much interest. Therefore, we need to be able to restrict
the sets. Apart from tuning the F values, this can be achieved in several
ways. The first method is via the reduction option. when this option is
activated, for any pair of simple implications that have the same factors,:
only the one with the highest F rates will be retained. For example, in a set
of implications computed by the program we may have:

(22) a. Vi=val_1 = v2=val 2 < Fr=r1, Fa=al, Fc=cl >
b. v2=val 2 -> Vi=vall < Fr=r2, Fa=a2, Fc=c2>

Wwith the reduction option on, if Fa is the main sorting item, only the
implication with the highest Fa value is retained. (In case al and a2 are
equal: the one with the highest Fr value is retained). When all F values are
equal, both are retained. :

A second way of output reduction is the clustering of variables into
groups. Say we are interested in the relationship between the order of the
modifiers of the noun relative to the noun or relative to each other and the
existence of or type of NP internal agreement. We can then select the
variables pertaining to modifier noun order, and assign them to group 1. The
variables reflecting agreement properties within the NP can then be assigned
to group 2. Thanks to the clustering option, the LINFER program will compute
only the implications holding between the group { and group 2 variables. It
will ignore any implications obtaining within the respective groups. So, if
we have some variable of group 1 as a premise, we may have only variables of
group 2 for a conclusion, and the other way round.

The group option is very useful, since it enables one to find lower level
implications, i.e. holding for smaller sets of languages which would otherwise
be missed or obscured. '

Yet another reduction of implications can be achieved by assigning levels
to groups. With this option the program will only derive implications of which
the variable in the premise has a lower level than that in the conclusion.
Implications in language typology are generally perceived as neutral towards
inductive or deductive reasoning over sets of variables. By assigning levels
to (sets of) variables, and allowing higher level variables only as a
conclusion, an inductive perspective is created, in which the higher level
variables might explain, or at least could be said to be necessary for, the
lower level cnes. In an alternative mode, this scheme may be reversed, and the
perspective made deductive rather than inductive. If we would, for example,

16

assign level 1 to a variable AdjNorder (= adjective-noun order), and level 2
to a variable OVorder (= object-verb order), then, over a certain data base,
we might derive the following implications under the induction and deduction
options respectively:

(23) a. (inductive) AdjNorder=AdjN -»> OVorder=0V
b. (deductive) OvVorder=0V -> AdjNorder=AdjN

Although, in a technical sense, the occurrence of these implications under the
respective options do not necessarily confirm the level status assigned to the
variables, this option helps to create a certain experimental perspective on
the data. For example, if the level ordering were to be right in the above
cases, one would expect Fa and Fc values of (close to) 1.0 for deductions, but
not necessarily for inductions. This point will be further elaborated in
section 4.4.2. As a side effect of the level option the amount of implications
generated is further reduced.

If in the body of derived implications, we have a tuple such as that in
(22) above, and both are absolute (i.e. Fa=1.0), then we have an equivalence,
that will be represented by the program as follows:

(24) Vi=val_1 «<-> v2=val 2 , n=lgs
< Fr=r, Fa=1.0, Fc=1.0 > Equiv

where r=ri=r2. One of the equivalences that was found in the word order data
is given in (25):

(25) V28.1=Gender <-> V28.3=Gender n=24
<Fr=0.55, Fa=1.00, Fc=1.00, Pv=0.25, Pw=0.62> Equiv

1gs: alb bul bye cat clg cze dan dut frs ita lit mac mal
nor pol rus scr slva slve spa swe ukr uso wel

(25) states that among the languages in the data base, whenever a language
displays gender agreement between adjective and noun, then there is gender
agreement between demonstrative and noun, and vice versa.
In the light of the options described below, both versions of an equivalence
are retained, even under the reduction option, as are all the implications
with equal F rates.

On the basis of a set of simple implications compiled over some selection
of variables in a data base, other - secondary and tertiary - quantities may
be computed. It is to these that we now turn.

4.4.2 Complex implications

In order to give absolute validity to linguistic implications, Hawkins (1983:
75f) combines simple implications into complex ones. One of the most
frequently cited of Hawkins' complex implications is the Preposition Noun
Modifier Hierarchy presented in (26).

(26) Prep -> ((NDem OR NNum -> NA) AND

(NA -> NGen) AND
(NGen -> NRel))

17

il

In essence, the complex implication in (26) states the following: if a
languzge 1is prepositional, then, if demonstratives oOr numerals are placed
after the noun, then the adjective, genitive and relative clause are also to
the right of the noun. Or: in prepositional languages, the longer a nominal
modifier is, the easier it moves to the right of the nominal head.

An option has been built into the LINFER program to derive this type of
complex implications. There are three versions of this option: conjunctions;
disjunctions; and full logical inference. They will be treated in some detail
pelow. Since the complex implications are derived from simple implications
already computed in the first phase, only those implications are considered
that surpassed the minimum values for the respective parameters. I1f one wants
all implications to be found in the data to be considered as elements of
complex ones, no constraints should be initially set on their derivation. This
is particularly important for disjunctions cince several low scoring
implications may lead to high scoring disjunctions.

4.4.2.1 Conjunctions

under this option, simple implications are combined by way of the logical AND
operator. Assuming that in our body of derived simple implications we have the
three implications in (27) the program will derive the chain in (28):

(27) vi=v_1 = v2=v_2
v2=v_2 => v3=v_3
v3=v_3 = vi=v_4

(28) Vvi=v_1 > (v2=v 2 -> (V3=v_3 > vi=v 4)), < Fr, Fa>
In (28), Fr is determined by the conjunction of the relevance sets for the
premises of (27); Fa is the subset of this to which v4=v_4 applies [9]. Some
concrete examples of such a chain of implications from the word order data
base are given below. First a complex implication based on two simple ones.
(29) V3_0O=case -> (v29_6=case = v29_4=case) n=22

< Fr=0.500, Fa=1.000 >

1gs: alb bye clg cze dar did est fin geo hng lez 1lit
mar mor pol rus scr slva slve udm ukr uso

This (exceptionless) complex implication states that if a language codes
recipients in ditransitive clauses by means of inflectional case, as opposed
to adposition or word order, then, if it also has case marking on objects then
it has case marking on subjects. The following chain is derived from four
simple implications:

(30) v15_3=p1 -> (v4_3=all > (v27_1=S ->
(V34_1=yes -> v34_3=no))) n=12

¢ Fr=0.295, Fa=1.000 >
1gs: bye clg cze est 1it mac pol rus ScCr slva slve ukr

This complex implication should be read as follows: if a language requires all
Wh-words in multiple questions to be fronted, then, if all basic orders are

18

possible in declaratives without left or right dislocation, and if there is
subject agreement on the verb, then if the language may drop the pronominal
subject, it has no expletive. This implication is in force for 12 languages
in the word order data base; there are no exceptions.

In the program, a lower limit may be set to the relevance and applicability
values of such chains independently from those that were determined for the
simple chains. The program will compile all chains of whatever length. This
option may bring about more complex relations between sets of variables, and
may put one on the track of cooperating and conspiring forces in a grammar,
such as the -elativization and promotion conspiracy discussed, €or example in
(Croft 1990), especially if these are based on more than two factors.

In relatively rich domains, a great number of chains may be compiled,
especially when no levels are assigned to the variables. With the assignment
of levels, complex hypotheses on hierarchies between (sets of) variables may
be tested. The user may tune the minimum F values in order to get the number
of resulting rules considered to be both interesting and manageable.

4.4.2.2 Alternative factors

Within a body of simple implications, a number of implications may be found
that share either the premise or the conclusion. The LINFER program has a
built in option to collect all implications that have such a common factor.
So, if among the set of implications for some language sample, the following
are to be found:

(31) Vi=val_1 -> V2=val 2
vi=val 1 -> V3=val 3
Vi=val 1 -> Véd=val 4

the program will derive

(32) Vi=val 1 -> V2=val_2 OR V3=val_3 OR V4=val 4

< overlap = x >

(32) may be interpreted either deductively as: ‘'val_1 is expressed in
languages by one or more of val_2, val_3 or val_4', or inductively as: 'if a
language has val 1, then it is either a val_2, val_3 or val_4 language'. An
important aspect here is the amount of overlap between the languages to which
any of the subfactors in the conclusion applies, expressed by the overlap
factor x. This is a value between 0.0 and 1.0. Overlap equal to 0.0 means that
the OR operators are, in fact, exclusive: no two subfactors are shared by any
language. Overlap equal to 1.0 means that the complex factor may be read as
a conjunction of subfactors, in other words that we are dealing with an AND
chain.

The above type of implication may gain in interest if the factors in the
conclusion stem from the same level. This may be brought about by using the
group and level options. A special situation arises when we find only one
variable in the conclusion. When this is combined with overlap = 0.0, we may
be dealing with a subtypology of the languages of the type characterized by
the premise. When the overlap equals 1.0, and all values of the variable are
in fact present, we may have a case of dominance (see also section 4.4.5).
Depending on the perspective one wants to adopt, the resulting rule sets may
be ordered according to an increasing or decreasing overlap value. It is
possible to determine a threshold value for overlap, a maximum in case of

19

increasing order and a minimum for decreasing order.

This scheme may be reversed to the extent that the program may be
instructed to collect implications that have the same conclusion instead of
the same premise. So, if the following simple implications were derived:

(33) V2=val_2 -> Vi=val_1
V3=val 3 -> Vi=val_1
V4=val 4 -> Vi=val_1

the program can combine them into:
(34) v2=val_2 OR V3=val_3 OR V4=val_4 -> Vi=val_l1
< overlap = x >

Using the deduction/induction option, the desired perspective may be created
just as in the case of simple implications.
Since the alternative factors option merges subsets of languages, it is

particularly suited for raising the F values, Fr values in the case of
combined premises, and Fa values for combined conclusions. Threshold values
for these may again be determined independently.

4.4.2.3 Full logical inference

A third option is the derivation of all complex implications, including
combinations of AND and OR operators, such as those in (26). The algorithm
generates all possible expressions of propositional logic in a systematic
short-to-long manner, and fits all existing variable-value combinations in
each scheme. Of each fully specified expression the F values are determined.
If they are above the predetermined threshold values, the implication is
retained for later inspection. Optionally, the NOT operator may be introduced
into the scheme, but only on the lowest level, i.e. as an alternative for the
= operator in variable-value pairs [10].

An option restricts the length and complexity of the generated strings. And
yet another allows for the application of the group and level options.
Implication (26) above came out of this process in the following fashion:

(26') ((V0_2=prep OR VO_2=prefprep) AND
(V20_9=NDem OR V20_11=NNum) AND
V20_15=NAdj AND V21_2=NG) -> V20_18=NRel n=4
< Fr=0.091, Fa=1.0 >
lgs: clg mal pol rus

This confirms (26) for the sample in the word order data base.

4.4.3 Explaining exceptions

If some implication has Fa < 1.0, then it does not hold for all the languages
that exhibit the premise, in other words it has exceptions. The program lists
the languages that constitute an exception to a given implication, provided
that their number is less than that of the languages to which the implication

20

does apply (i.e. there is a Fa value of at least 0.5). With the explanation
option on, the program will search for factors that could possibly explain the
distinct behaviour of the languages that constitute the exception to the
implication. Let us assume that: Sa is the set of languages to which some
implication In applies, Se is the set of languages that are an exception to
In, and Le is a language in Se. Given the above, the program will trace all
the variables and factors that are relevant for all the languages in Sa, but
not for Le. These are reproduced as being irrelevant for Le only. In addition
the program will trace all the variables and factors that are relevant for Le,
but not for any language in Sa. These are reproduced as being relevant for Le
only. An example from the word order data base is (35):

(35) V20 15=AdjN -> V20_9=DemN n=42

< Fr=1.00, Fa=0.96, Fc=1.00, Pv=0,50, Pw=0.98 >

lgs: abx alb bre bul bye cat clg cze dan dar did dut
eng est fin fre frs geo ger gre hng ita kom lez
lit mac mal mar mor nsa nor pol rus scr slva
slve spa swe udm ukr uso wel

exc: bas chu

Basque Vv20_9=NDem

Chuvash v20_9=?

*% Possible explaning factors: **

Basque V20 _17=IntNAdj
Basque V20_20=RelGenNum
Basque V20_21=AdjArt/Dem

Basque and Chuvash are the only exceptions to the rule that if a language
preposes the adjective then it preposes the demonstrative. For Chuvash the
crucial information is not (yet) available; for Basque the opposite noun-
demonstrative order applies. The data base is now searched for variable-value
pairs that are unique for Basque. Three of these are printed here. Basque is
the only language in the data base that has the noun in between the
intensifier and the adjective; that obligatorily preposes full relative
clauses, genitives and number in that order; and that has the article and the
demonstrative at the end of the noun phrase. Whether these - and other
factors, not printed here - constitute an explanation for the exception is,
of course, a matter of further interpretation and research.

4.4.4 Parameters

In linguistic theory, variables that have a relatively high 1level of
explanatory power are sometimes called the parameters of the theory. The
LINFER program has an option that determines the possibly parametric variables
to be found in the set of variables in a QTP type data base. A variable is
considered to be parametric if and only if it has one, and not more than one
real (i.e. non-missing) value for all languages in the data base. The set of
thus established parametric variables is ordered according to the number of
times it is found as a factor of a simple or complex implication computed over
the data base. If the inference scheme is set to neutral, any occurrence as
a factor is counted as 1. In the inductive or deductive mode, an occurrence
is weighted according to its position in an implication. For an induction, an

21

occurrence is assigned more weight the further it occurs to the right (e.g.
the premise of a simple implication counts for 1; its conclusion for 2; the
final conclusion of a implication such as (30) counts for 5); for a deduction
the highest weight is assigned to the occurrence furthest to the left. The
total sum determines the parametric weight of some variable. If groups are
assigned, the program will compute a2 level for any group, based on the sum of
the parameter weights for the group variables. Some of the parameters found
for the word order data base are:

(36) VO_1 (greenbergian classification)
v3 4 (dative shift)
vidg_1 (p-particle in yes/no questions)

4.4.5 Dominance

In (Greenbergd 1963), a yvariable-value combination is called dominant relative
to some variable if it occurs with all values of that variable. An example is
to be found in the following table, which gives the co-occurrences of
noun-adjective and noun-demonstrative orders in Greenberg's sample:

NA AN
DemN 12 7
NDem 11 0

DemN is dominant because it occurs with all values of the adjective-noun
variable, while NDem does not (which is therefore recessive). For the same
on NA is dominant and AN igs recessive. In the program, the notion of
dominance is generalized to: vari=val_1 is dominant over variable Var2 if
vari=val_1 occurs with all (non-missing) values of var2 as the only value fo
variable varl. yar1l is called the controlling variable and var2 a controllec
variable of the dominance relation. In order to stay close to the origina
concept, by default only non-multi valued variables are considered as th
controlling variable for dominance. In these cases W€ will use the term pur
dominance. Optionally, multi-valued variables may be taken as controllers
guch relations will be called mixed dominance. In the resulting list
variable-value combinations are ordered according to the number of dominanc
relations they maintain. An example of pure dominance and mixed dominance i
the word order data base are given under (37a) and (37b) respectively:

(37) a. variable V27_3 (subject person agreement on the verb)

value "123" has pure dominance over all values of:

v27_6 (obj agr verb)

v21_7 (obj gender agr verb)
v27_8 (obj person agr verb)
v27 9 (obj number agr verb)
v27_10 (form obj agr marker)
v28_2 (agr pred adj subj)
v28_3 (agr dem noun)

v28_4 (agr art noun)

v28_5 (agr numr noun)

22

b. Variable v29_1 (type of bondness)
value "suff" has mixed dominance over all values of:

v27_6 (obj agr verb)

v27_7 (obj gender agr verb)
V27_8 (obj person agr verb)
V27 9 (obj number agr verb)
v27 10 (form obj agr marker)
v28 3 (agr dem noun)

v28 5 (agr numr noun)

Apart from being a quantity in their own right, dominance relations may lead
to the derivations of markedness patterns. Since the dominant value of some
variable implies the greatest diversity vis a vis the controlled variables,
it qualifies for the status of unmarked value (cf. (Croft 1990) on features

of markedness).

4.4.6 Typological hierarchy

A variable has strict typological value ordering if its values may be ordered
according to the following scheme:

(38) vall <« val2 ¢ val3 < ... < valn

where value valj is never relevant for some language without valj-1 being
relevant for that same language [11]. The variable concerned does not have to
be relevant for all languages. A well-known example of such a variable in the
typological literature is Number, that has the following ordering:

(39) Number = singular < plural < dual < trial

The LINFER program has a built in option to trace variables with typological
ordered values. In the word order data base, the following are found, among
others (again, this concerns of course the 44 European languages in the data

base only):

(40) a. NumN < NNum
lgs=43 < lgs=5

b. OrdN < NOrd
1lgs=42 ¢ 1lgs=2

c. AdjN < NAdj
lgs=44 ¢ lgs=21

d. suff < pref
1gs=40 < lgs=4

Partial typological ordering is a relaxation of strict ordering. A well-known
example is the colour hierarchy as established in (Berlin & Kay, 1969). In
general, variables with partial ordering must adhere to the following scheme:

(41) valuesetl <« valueset2 < valueset3 < ... ¢ valuesetn

23

where valuesetj is a non-empty subset of values of the variable concerned. In
order for the relation to hold, any _language should choose its values such
that never a value is selected from subset valueset] if there is a subset in
the range valueset] to valuesetj-1 that it has not selected a value from.
Examples from the word order domain:

(42) a. (expression definiteness)
art, dem, POSSPro < word_erder < Clboub

b. ‘object agreement verb)
pat < rec

c. (passive subject)
pat < rec, ben < AdpObj

(42c) gives support for the Semantic Function Hierarchy as to pbe found in
Functional Grammar (pik 1989).

4.4.7 Language clustering

A last step in the analysis is the compilation of clusters of languages. FOr
the clustering of cases in a data matrix, several methods have been developed,
all going under the label of cluster analysis (et spss/PC Advanced
statistics). For all these methods, clustering takes place over variables that
are at least of the ratio level: the distance between cases is determined on
the basis of the amount of difference between the values for the clustering
variables. Not many analytic linguistic variables will qualify for such an
analysis. Still, clustering, especially the hierarchical version, appears to
be an attractive way of representing the likeness of languages along certain
specific dimensions. BY choosing the right variables or parameters, we may
establish hierarchies of typologically related languages. we therefore
included two options. The first is a straightforward built in strategy that
groups languages into clusters of a predetermined cize between 2 and n-1 where
n is the number of languages in the data base. These clusters are determined
on the basis of the number of implications that the languages in the cluster
share. The strongest cluster of size s is the one whose s languages share the
greatest number of implications. As an example, we give some of the strongest
clusters considering the 100 strongest implications in the word order data
base, for cluster sizes 3 and 4, respectively:

lgs: bye ger lit
0 lgs: bul bye sCr

Cluster
Cluster

(43) LANGUAGE CLUSTERS OF SIZE 3:
Cluster 1 1gs: bul bye ger

Cluster 2 1gs: bul bye gre
Cluster 3 1gs: bul slva ukr
Cluster 4 1gs: bul fin lit
Cluster 5 1gs: bul bye it
Cluster 6 1gs: bul bye mac
Cluster 7 1gs: bul fin mac *
Cluster 8 1gs: bul bye pol

9

1

24

(44) LANGUAGE CLUSTERS OF SIZE 4:

Cluster 1 lgs: bul bye fin lit
Cluster 2 lgs: bul bye ger mac
Cluster 3 lgs: bul bye fin mac
Cluster 4 lgs: bul bye ger pol
Cluster 5 lgs: bul cze mac pol
Cluster 6 lgs: bul bye ger scr
Cluster 7 lgs: bul bye ger slva
Cluster 8 1gs: bul bye ger slve
Cluster 9 1lgs: bul bye ger ukr
Cluster 10 1lgs: bul cze fin ger

In general, a great many clusters will result from this procedure. The program
may be instructed to retain only a reduced number of the strongest clusters.

This clustering technique is quite straightforward, and of limited
interest. Many standard statistical packages have built in cluster algorithms
of a relatively high level of sophistication that can provide the researcher
with more interesting clustering results. Since the secondary linguistic data
do not normally qualify for such analyses in a direct way, tertiary variables
may be derived through the LINFER module that do have the right properties.
For example, let I1...In be the set of simple implications derived for the
languages in the data base. Now for any language L in the data base a set of
variables V1...Vn is generated such that Vj has value 1 if Ij applies to L and
0 if it does not apply. The data matrix created in this way is written to a
file in the right format and extended with the necessary descriptive
information that makes it accessible for the statistical package SPSS; SPSS
disposes of a series of cluster analytical procedures that may be run on this
derived data matrix [12]. Instead of value 1, LINFER will optionally write
either the Fa value or (1-Fr) for each implication. With Fa, most weight will
be given to the implications with the heighest application rate. With (1-Fr),
the implication will be given more weight by the clustering procedure if it
is relevant for less languages, i.e. if the collocation of the languages is
more specific.

Running SPSS Cluster analysis on a data matrix for the 44 languages based

on the 100 implications that had the highest Fa values over the complete set
of word order variables gave the diagram of figure 5. One over the variables
describing word order in the noun phrase gave the diagram of figure 6.
It should be stressed that this diagram is not the reconstruction of a genetic
tree, but a graphic representation of the level of closeness of languages as
far as their cooccurence in implications over the word order variables is
concerned. Such representations may, however, be used in constituting
typologogies.

25

CASE
Label Segq
Slo 37
Ukr 42
Bye 6
Pol 34
Ser 36
Slo 38
Rus 35
Bul 5
Fin 17
Lit 27
Alb 2
Mor 31
Spa 39
Swe 40
Cat 7
Eng 15
Mac 28
Cze 10
Dan 11
Ita 24
Mal 29
Hun 23
Upp 43
Bre 4
Wel 44
Ger 21
Gre 22
Fre 18
Cla 9
Nor 33
Fri 19
Dar 12
Geo 20
Abx 1
Bas 3
Udm 41
Kom 25
Lez 26
Chu 8
pid 13
Est 16
Nor 32
Dut 14
Mar 30

-

P e

figure 5

26

T S ——

B

CASE

Label Seq
Dar 1.2
Ukr 42
Geo 20
Lit 27
Nor 32
Did 13
Udm 41
Mar 30
Slo 37
Slo 38
Bye 6
Ser 36
Cze 10
Fin 17
Pol 34
Est 16
Lez 26
Rus 35
Mac 28
Mor 31
Bul 5
Chu 8
Kom 25
Gre 22
Hun 23
Fre 18
Ger 21
Fri 19
Nor 33
Dan 11
Swe 40
Alb 2
Dut 14
Eng 15
Bre 4
Spa 39
Cat 7
Ita 24
Wel 44
Upp 43
Abx 1
Cla 9
Mal 29
Bas 3

Rescaled Distance Cluster Combine

21

0 5 10 15 20 25
| | | | L |
:] _

:]__

—
.J

—

el

:jﬂﬁ____

:T*

:]__

1

figure 6

4_4.8 Further issues

A number of extra options and aspects of the LINFER program have remained
outside the discussion so far. A few of them will be presented briefly below.

4.4.8.1 Changing values

In section 3 it was mentioned that complex values may be subjected to analysis
via a formal procedure. The LINFER program can do this in two ways: by
recoding and by rewriting. In the case of recoding, 2 value is substituted by
another value. A case in point is jllustrated in (45).

(45) a. VO
b. Vo

(svo, VSO, VOS)
(svo, VSO, VOS) ,
(Basic_Order, Transitive orders)

W

(45a) shows the substitution of the three values in the list by the value to
the left of the equals sign for all variables. In (45b) the substitution
effects only the two variables specified in the second list.

Another way of value transformation is by rewriting. This mode takes advantage
of the analyzability of the variable values mentioned above. The rule in (46)
will rewrite to VO all values that contain V and O as elements, in that order.
The Kleene star, that forms part of the meta-language, has the conventional
meaning of standing for zero or more symbols:

(46) *Vk0* -> VO

Rewriting may also be restricted to a subset of the variables.

4.4.8.2 Scales

When a scale is in force for some selected variable, it may play a role 1
implications in two ways. First, the scale value may be used to distinguis]
between factors. When it is used to do so, it is added to the factor, so w
may then have the following implications:

(47) vi=val_1 (obligatory) -> v2=val_2a
vi=val 1 (optional) -> Vv2=val_2b
v3=val _3a -> v4=val 4a (formal)
v3=val 3b -> v4=val_4b (informal)

oo oe

This option may introduce implications that do not emerge without the scal
distinctions due to the fact that they remain under any reasonable lower limi
of Fa or Fc values. The second way of using scales in implications is 1
employing them as a selection mechanism for variable values. For example, -
for variable V1 the preference scale cited earlier in (10) is relevant, the
we may decide to include in the analysis only the values with scale valr
'obligatory' or 'preferred' for any language. '

4.4.8.3 Syntagmatic conditions

Like scale values, syntagmatic conditions may be added to factors, with t
same type of effect as described in section 2. Given their often jdiosyncrat

28

character, however, relevancy values will generally be rather low.

Further, the mere presence or absence of conditions may be used as a selection
mechanism, without any further specification of the nature of the condition.
This leads to the following type of representations:

(48) a. Vi=val_f -> V2=val 2a
b. Vi=val 1 <CONDITION> -> V2=val_2b

A more sophisticated treatment, that deals with the contents of conditions,
has not yet been implemented as part of the analysis process. It will become
more interesting when an integrated data base will be available containing
variables stemming from several subdomains, that may appear in the syntagmatic
conditions of variables from other domains. Apart from (implicit) implications
between variables stemming from different linguistic domains, such cros-domain
conditions explicitly build links between parts of the grammar.

4.4.8.4 Missing values

Missing values for variables may be entered via the QTP program or be defined
by the user. In the QTP program there are two types of missing values: ? (=
value not provided) and a blank (= variable not relevant). The user may
specify a set of real values for the variable set that are defined as
'missing' in the domain definition file and the data base (see (10c) above).

The system defined missing value ? is left out of any analysis (i.e. there
will be no implications for such values). The number of missing values is
reported in the output for any selected variable. In case a variable is
irrelevant for some language, the latter is left out of corresponding
implications by definition. As far as the user defined missing values. are
concerned, these may optionally be treated either as 'normal' values or as ?.
In case of a scale being applied to some variable, a missing scale value for
some language will be treated by the program as a separate option for that
scale. This means that it may be manipulated by the user in the same way as
'real' scale values may.

4.4.8.5 Verification

Apart from inferenceing rules from the data base, the LINFER program may be
used to verify simple and complex implications provided by the user. In this
way, any implication over the variables in the data base one may want to
investigate may be tested. Also, universals found in typological literature,
that may be formulated in terms of implications over variables and values of
the data base may be verified. Especially the latter option may be of
interest. As an example, I took the following related universals from (Dryer
1992, 56), that are based on his 625 language sample:

(49) If a language is prepositional, it will employ clause-initial
adverbial subordinators

(49) could be translated to variables V0_2 (adposition) and V19_2 (location

subordinator) of the word order data base, and came out in the following
fashion:

29

V2=val2 V2#val2 total

Vi=vali 18 (=appl) 2 (=cntrex) 20 (=rel)
Vi#vali 1 9 10
total 19 (=cov) 11 30 (=tot)

8. At face value, ‘it may sound counterintuitive that an implication that
applies to, say, 3 languages should be called a universal. However, if it is
found in a relatively small language sample, e.g. 30 or 50, that is supposed
to be representative for the phenomena under analysis, any subset may, in
fact, represent several hundreds of languages. In the case of acknowledged
isolates we may even deal with a phenomenon that is restricted to one single
language, while it may still broaden our insight into the concept of
'possible human language'.

9. An alternative notation for (28) is:
(28') V1=v_1 AND V2=v_2 AND V3=v_3 -> V4=v_4
which makes more apparent the role of the AND operator.

10. Formally, this is not a restriction since NOT operators may always be
lowered in any expression in propositional logic.

11. We adopt the < rather than the > to represent such hierarchies since the
latter may, wrongly, be interpreted as an implication sign. In fact, (38)
corresponds to the following chain: -
(38') valn -> ... =» val3 -> val2 -> valf -

12. In the version of SPSS currently in use - SPSS/PC version 3.01 - the
maximum number of variables that may be included in a cluster analysis is 600.
The cluster method built into LINFER includes any number of implications, but
does not give the sort of hierarchical ordered results shown below.

13. In his note 8 Dryer in fact refines universal (49) to the extent that
languages for which it is not relevant, i.e. that have no subordinators, are
explicitly excluded. Also, it is turned into a tendency by including the
languages that employ both types of adposition, but prefer prepositions, and
languages that employ both clause-initial and clause-final subordinators, but
have a preference for the first.

32

e i g R = s

S

REFERENCES

perlin, B. & P. Kay (1969). _
Basic Color Terms: their Universality and Evolution. Berkeley: University of

california Press.

comrie, B. (1981).
Language Universals and Linguistic Typology. Chicago: University of Chicago

Press.

croft, B. (1990).
Typology and Universals. Cambridge: Cambridge University Press.

pik, S.C. (15989).
The Theory of Functional Grammar. Dordrecht: Foris.

pryer, M.S. (1987).
A Statistical Study of Word Order Universals. Final report for Social Sciences
and Humanities Research Council of Canada Research Grant. University of

Alberta.

Dryer, M.S. (1992). :
Adverbial Subordinators and Word Order Asymmetries. In: ESF Working Paper

I1/2, 50-67.

Greenberg. J. (1963).
Some Universals of Grammar with Particular Reference to the Order of

Meaningful Elements. In J.H. Greenberg (ed.) Universals of Language. Cambridge
(Mass.): MIT Press, 58-90.

Hawkins, J. (1983).
Word Order Universals. New York: Academic Press.

Rijkhoff, J., D. Bakker, K. Hengeveld & P. Kahrel (1992).
A Method of Language Sampling. Studies in Language (to appear).

Ruhlen, M. (1987).
A Guide to the World's Languages.Vol. 1: Classification. London: Edward
Arnold.

Siewierska, A. (1988).
Word Order Rules. London: Croom Helm.

SPSS/PC. Base Manual and Advanced Statistics.
Van der Steen, G.J. (1987).

A Program Generator for Recognition, Parsing and Transduction with Syntactic
Patterns. PhD thesis, University of Utrecht.

33

APPENDIX A: FORMAL DEFINITION OF THE DSL LANGUAGE

The formalism is based on context-free rewriting rules with extensions that
give it transformational power, as used by the parser-compiler system Parspat
(van der Steen 198x). For DSL, only context-free rules are used.

! DSL: Domain Structuring Language !
DSL :: Domain Data_ Base.
! 1. QUESTIONNAIRE FILE !

Domain :: Header, [Scales], [Miss_Val], [Cond Vars], Var_Descs, Footer.
Header :: Text, CR.

Scales :: Scale, [Scales].
Scale :: 'scale', Name, Eq, Value_List, CR.

Cond_Vars :: 'condition variables', Eq, variable List, CR.

Var Descs :: Var_Desc, [Var_Descs].
Var Desc :: Astrx, Name, [Lbr, Ext_String, Rbr], Ext String,
CR, Parameters, CR, Values.

Footer :: Astrx, CR.

Parameters :: 'parameters', Eqg, Parameter_List.
Parameter List :: Lbr, Pars, Rbr.

Parameter List :: Lbr, Rbr.

Pars :: Par, [Pars].

Par :: 'scale', Eg, Name.

Par :: 'paradigmatic_condition', Eq, Implication.
par :: 'syntagmatic_condition'.

Par :: 'open'.

Par :: 'multi', Eq, Number.

Par :: 'hierarchical'.
values :: Value, CR, [Values].
value :: Lower, Stop, Lable.

! 2. DATA BASE !

Data_Base :: [Miss_Vall, Domain Variables, Language_Descriptors.

Domain_Variables :: Domain Variable, [Domain_Variables].
Domain Variable :: Name, Eg, Ext_String, CR.

Language Descriptors :: Language_Descriptor,
[Language_Descriptors].

34

B

Language_Descriptor :: Dlr, Number, Name, Number, CR,

Var_Val_List.
Language_Descriptor :: Dlr, Number, Name, Astrx, CR.
var Val_List :: Var_Val_Set, [Var_Val List].

var Val_Set :: Name, Eq, val_Sets, CR.
var_Val_Set :: Name, Eq, Qst, CR.

val Sets :: Val_Set, [Bcksl, Val_Sets].
val Set :: Lable, [Hyph, Scale_Cond].

Scale_Cond :: Lsbr, Scale value, Comma, Syntagmatic_Condition,
Rsbr.

Scale_Value :: Lbr, [Lable], Rbr.

Syntagmatic_Condition :: Lbr, [Condition], Rbr.

! 3. SHARED RULES !

Miss val :: 'missing values', Eq, Value List, CR.
variable List :: Lbr, Names, Rbr.

Value List :: Lbr, Lables, Rbr.

Implication :: Lsbr, Condition, Arrow, Name, Rsbr.
Condition :: Cond, [L_Op, Condition].

Condition :: Lbr, Condition, Rbr.

Cond :: Name, E Op, Lable.

Names :: Name, [Comma, Names].
Name :: Upper, [String].

Number :: Digit, [Number].

Lables :: Lable, [Comma, Lables].
Lable :: Letter, [String].
Lablg :: Digit, [String].

String :: String Symbol, [String].
String Symbol :: Letter | pigit | und | slash.

Ext_String :: Ext_Symbol, [Ext_String].
Ext_Symbol :: Letter | Digit | Und | Amp
Stop [Comma | Slash Ost

Eq | Ueg | Hyph |
Excl | Space.

Text :: Quote, Text String, Quote.
Text String :: Text_Symbol, [Text_String].
Text_Symbol :: Ext_ Symbol | cr.

35

! 4. TERMINALS !

Lsbr
Rsbr
Und
Hyph
Amp
Qst
Excl

s e we

Astrx :
Space :
Arrow ::
Slash ::

Bcksl
Dlr

as 4s

..

-

'anD' | 'OR'.
1 Eg | Ueq.

:: Upper | Lower.

36

: 0S

=

T FILE FOR THE WORD ORDER DOMAIN

more or less representative variables are displayed here.

the domain is coded in terms of around 225 variables.

erence=[oblig, pref, non_pref, rare]
rict=[fav, restr]

tyle=[collogial, literary, dialectic, formal,
written]

spoken,

{;;1;2) agent topic
5 open scale=preference *

(= 2.1 - 2.4) order si
.gference cond synt multi=2 open *

37

*y29 8a (=) nominal cases
cond synt cond out=[(V29_8a=none > V29_9)] scale=restrict multi=10 *
none

obl

. nom

. ace

. dat

. gen

instr

loc

. voc

. part

. erg

. abs

*y29 _8b (=) local cases
- cond_synt open multi=15 *
a. none

iness

elat

illat

adess

. abl

. all

. term

subess

adlat

superess

. delat

sublat

. postess

. adelat

subelat

postelat

superelat

s. superdir

t. inelat

u. lative

*y29 8c (=) other adverbial cases
- open cond synt multi=15 *
a. none

ess

comit

carit

trans

abess

instruct

. sociat

destin

motiv

prolat

distr

. process

modal

. egress

. precl

. consec

HREWEDTQ DO WO O |

HOmoo s arHF YR O ado

o

-

H.0OT 0P 8 K FY-HO Mmoo

38

APPENDIX C: PART OF THE WORD ORDER DATA BASE

N.B. only a small section is shown. Currently, the data base contains data on
44 languages coded in about 225 variables, of which an average of 175 are
relevant per language.

$ Dutch

V0_1=SV0/V2

v0_2=prefprep

v1_1=8VO0 '

vi 2=Sv0 - [(Preference=pref) , ()1\

T vso - [(Preference=non_pref) , ()I\

VvOS - [(Preference=non_pref) , ()I\
ovS - [(Preference=non_pref) , ()]

v1_4=SpassPeriphAg - [(Preference=oblig) , ()]

vi_6=noeffect

Vv1_7=noeffect

Vv1_8=nocl

v2_1=vsi - [(Obligat=obl) , ((Pattern=Expletpl) OR

(Pattern=Advpl)) , (Preference=pref) ,
((pefS=indef) OR (Wght=heavy))I\

SiV - [(Preference=pref) , ((DefS=def) OR (WghtS=1ight))]

v2_2=LcN - [(Preference=pref) , () 1\
ExplcNL - [(Preference=pref) , ()]\
LcExplN

v3_0O=prep\zero

V3 _1=RnomPnom\PproRpro\PproRadp

V3_2=PRadp

V3_3=none

V3_4=RecBen

V3_5=Ladpladp

v4_1=0vS\SVO

V4 2=AdvAuxSOV\AdvVSO

V4 3=0VS\SVO

V4_5a=no

V4_5=subclause\AdvAuxSOV

V4 5p=?

V4_6=0RuxSvV

V4_6p=?

V4 7=quest\XVS0O

V4 _Tp=2

V4 8=impossb

V4 _9=prag\Owh

V4 _9p=0Ofoc

V4 _10=?

V4 10p=?

V4 11=?

V4 12=Sstrvo

V4 _12a=P1

V4 13=0strvs

V4_13a=P1

V4_14=SVOPPstr\PPstrvso

V4_14a=P1\final

V4_15=no

V14_1=no

V14 4=asinSubCl

39

APPENDIX D: SPSS VERSION OF PART OF THE WORD ORDER DATA BASE

N.B. This file is generated automatically by the TRANS module.

DATA LIST FREE/LNGNR

vo 1 vo 2vVvi_1Vvi_2AVI 2BVl 2C Vi2DVI 2E
V1_4 A V1 4 R V1 4 c V1 4 vi_ v v1_7 V1_8_A Vi _8 B
v2 1 A V21 B v2 2 A v2 2 2 V2 2 D

!

t |

NO\I

1
2

B:IU
Nnh-
(‘1

VARIABLE LABELS LNGNR "language number"
/v0_1 '"greenbergian classif"
/VO0_2 "adposition"

/vi_1 "allnew order"

/V1_2_A "agent topic A"

T 2 _B "agent topic B"

JV1_ 2 C "agent topic C"
/V1_2_D "agent topic D"
/V1_2_E "agent topic E"
/v1_4 A "patient topic A"
/v1_4 B "patient topic B"
/vi_4_C "patient topic e
/vi_ 4 D "patient topic D"
/v1_ i3 _E "patient topic E"
/v "6 "full pro 0"

/Vi_ "7 "unstress pro 0"
/vi_8_A "clitic 0 A"

/vi_8 B "clitic O B"
/v2_1_A "order Si A"

/v2_1_B "order Si B"

/v2_2_A “order existential A"
/v2_2 B "order existential B"
/V2_2_C "order existential C"
/v2_2_D "order existential D"

VALUE LABELS LNGNR
27 "Abxaz"

119 "Albanian"
483 "Basque"
684 "Breton"
710 "Bulgarian"
767 "Byelorussian”
817 "catalan"
950 "Chuvash"
955 "Classical-Greek"
1015 "Czech"
1047 "Danish"
1052 "Dargwa"
1093 "Dido"
1178 "Dutch"
1249 "English"
1265 "Estonian"
1299 "Finnish"
1321 "French"
1323 "Frisian"
1434 "Georgian"

40

1437 "German"

1493 "Greek"

1681 "Hungarian"

1772 "Italian"

2211 "Komi"

2497 "Lezgi"

2527 "Lithuanian"

2632 "Macedonian"

2701 "Maltese"

2802 "Mari"

3069 "Mordvin"

3436 "Northern-Saami"

3444 "Norwegian"

3801 "Polish"

3963 "Russian"

4128 "Serbo-Croatian"

4254 "Slovak"

4255 "Slovene"

4331 "Spanish"

4382 "Swedish"

4767 "Udmurt"

4778 "Ukrainian"

4813 "Upper-Sorbian"

4997 "Welsh"

/v0_0a 1 "Indo_European"”

/v0_0b 1 "slavic"

/V0_1 1 "Sov" 2 "sov/free" 3 "SvO" 4 "svo/free" 5 "svo/v2"
6 'Ivsoll 7 "v-l n 8 llv2" g 1" free“

/v0 2 1 "prep" 2 "post" 3 "prefprep" 4 "prefpost" 5 "bothequal"
/vi_1 1 "svo" 2 "sov" 3 "vso" 4 "yprtvso"

ARl 2 _ATO V1_2 E 1 "sov" 2 "svo" 3 "vso" 4 "vOs" 5 "ovs"
6 "OSV" 7 "vprtvso" 8 "Lds" 9 "vAg" 10 "Xsvo"

/vi_ 4 A TO Vi_4_E 1 “"ovs" 2 "0SV" 3 "SpassPeriphAg" 4 "SpassSynthAg"
5 "VpassSAg" 6 "Ld" 7 "sSvo" 8 "Sov" 9 "vos" 10 "AgPassPeriphS" '
11 "0SVbeAux" 12 "vrpat" 13 "SVbeRuxO"

/V1 6 1 "noeffect" 2 "novo" 3 "prefvO" 4 "notwithVanalyt"

5 "ClDoub" 6 "2sgplObeforelsgs" 7 "prefvinit_ Vfin"

/V1,7 1 "noeffect" 2 "VOnegnotVnegvo" 3 "prefOv" 4 "notP1"

R I

/vi_ 8 A TO vi_8 B 1 "nocl" 2 "proclv" 3 "encl" 4 "VSproclvoptencl"
5 "not known" 6 "2nd"

/v2 1 A TO V2 1 B 1 "siv" 2 "vsi" _

/vz 2 A TO vz 2 D 1 "NCL" 2 "NLC" 3 "LNC“ 4 "CNL“ 5 "LCN"

6 "ExplcNL" 7 “"LcExpIN" 8 "ExplNL" 9 "LN"

MISSING VALUES VO _0a TO V2_2 D (0).
BEGIN DATA.

END DATA.

1

APPENDIX E: SOME DETAILS ON THE PROGRAMS

1. QTP

Goal: data entry of questionnaire data
Programming language: pascal

Source size: 3000 lines

Versions: MS/DOS; VAX

Minimum memory necessary: 640K

2. TRANS

Goal: transformation of data files
Programming language: Pascal
Source size: 2000 lines

Versions: VAX

Minimum memory necessary: 1M

3. DBL

Goal: run language data base
Programming language: Pascal
Source size: 5500 lines
Versions: VAX

Minimum memory necessary: 4M

4. LINFER

Goal: inference of linguistic rules
Programming language: Pascal

Source size: 6000 lines

Versions: MS/DOS; VAX

Minimum memory necessary: MS/DOS 640K; VAX 2M

Acknowledgement:

For sorting, the programs use Hoare's QuickSort method, adapted from the
original Fortran version as programmed by Karel Sprenger, Frank Koperdraat and

Hans Dekker.

42

