% pubman genre = article @article{item_3258627, title = {{Does absolute brain size really predict self-control? Hand-tracking training improves performance on the A-not-B task}}, author = {Jelbert, Sarah A. and Taylor, Alexander H. and Gray, Russell D.}, language = {eng}, issn = {1744-9561}, doi = {10.1098/rsbl.2015.0871}, publisher = {The Royal Society}, address = {London, [England]}, year = {2016}, date = {2016}, abstract = {{Large-scale, comparative cognition studies are set to revolutionize the way we investigate and understand the evolution of intelligence. However, the conclusions reached by such work have a key limitation: the cognitive tests themselves. If factors other than cognition can systematically affect the performance of a subset of animals on these tests, we risk drawing the wrong conclusions about how intelligence evolves. Here, we examined whether this is the case for the A-not-B task, recently used by MacLean and co-workers to study self-control among 36 different species. Non-primates performed poorly on this task; possibly because they have difficulty tracking the movements of a human demonstrator, and not because they lack self-control. To test this, we assessed the performance of New Caledonian crows on the A-not-B task before and after two types of training. New Caledonian crows trained to track rewards moved by a human demonstrator were more likely to pass the A-not-B test than birds trained on an unrelated choice task involving inhibitory control. Our findings demonstrate that overlooked task demands can affect performance on a cognitive task, and so bring into question MacLean{\textquoteright}s conclusion that absolute brain size best predicts self-control.}}, journal = {{Biology Letters}}, volume = {12}, number = {2}, }