% pubman genre = article @article{item_3406094, title = {{A skew in poo: Biases in primate fecal isotope analysis and recommendations for standardized sample preparation}}, author = {Oelze, Viktoria M. and O{\textquotesingle}Neal, I and Wittig, Roman M. and Kupczik, Kornelius and Schulz-Kornas, Ellen and Hohmann, Gottfried}, language = {eng}, issn = {0275-2565; 1098-2345}, doi = {10.1002/ajp.23436}, publisher = {Wiley}, address = {New York, NY}, year = {2023}, date = {2023-01}, abstract = {{Feces are a treasure trove in the study of animal behavior and ecology. Stable carbon and nitrogen isotope analysis allows to assess the dietary niches of elusive primate species and primate breastfeeding behavior. However, some fecal isotope data may unwillingly be biased toward the isotope ratios of undigested plant matter, requiring more consistent sample preparation protocols. We assess the impact of this potential data skew in 114 fecal samples of wild bonobos (Pan paniscus) by measuring the isotope differences ($\Delta$13C, $\Delta$15N) between bulk fecal samples containing larger particles ({\textgreater}1 mm) and filtered samples containing only small particles ({\textless}1 mm). We assess the influence of fecal carbon and nitrogen content ($\Delta$C:N) and sample donor age (subadult, adult) on the resulting $\Delta$13C, $\Delta$15N values (n {\textequals} 228). Additionally, we measure the isotope ratios in three systematically sieved fecal samples of chimpanzees (Pan troglodytes verus), with particle sizes ranging from 20 $\mu$m to 8 mm (n {\textequals} 30). We found differences in fecal carbon and nitrogen content, with the smaller fecal fraction containing more nitrogen on average. While the $\Delta$13C values were small and not affected by age or $\Delta$C:N, the $\Delta$15N values were significantly influenced by fecal $\Delta$C:N, possibly resulting from the differing proportions of undigested plant macroparticles. Significant relationships between carbon stable isotope ratios ($\delta$13C) values and {\textpercent}C in large fecal fractions of both age groups corroborated this assessment. $\Delta$15N values were significantly larger in adults than subadults, which should be of concern in isotope studies comparing adult females with infants to assess breastfeeding. We found a random variation of up to 3.0{\textperthousand} in $\delta$13C and 2.0{\textperthousand} in nitrogen stable isotope ratios within the chimpanzee fecal samples separated by particle sizes. We show that particle size influences isotope ratios and propose a simple, cost-effective filtration method for primate feces to exclude larger undigested food particles from the analysis, which can easily be adopted by labs worldwide.}}, journal = {{American Journal of Primatology}}, volume = {85}, number = {1}, eid = {e23436}, }