%0 Journal Article %A Jelbert, Sarah A. %A Taylor, Alexander H. %A Gray, Russell D. %+ Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Max Planck Society %T Does absolute brain size really predict self-control? Hand-tracking training improves performance on the A-not-B task : %G eng %U https://hdl.handle.net/21.11116/0000-0007-579E-6 %R 10.1098/rsbl.2015.0871 %7 2016-02-03 %D 2016 %* Review method: peer-reviewed %X Large-scale, comparative cognition studies are set to revolutionize the way we investigate and understand the evolution of intelligence. However, the conclusions reached by such work have a key limitation: the cognitive tests themselves. If factors other than cognition can systematically affect the performance of a subset of animals on these tests, we risk drawing the wrong conclusions about how intelligence evolves. Here, we examined whether this is the case for the A-not-B task, recently used by MacLean and co-workers to study self-control among 36 different species. Non-primates performed poorly on this task; possibly because they have difficulty tracking the movements of a human demonstrator, and not because they lack self-control. To test this, we assessed the performance of New Caledonian crows on the A-not-B task before and after two types of training. New Caledonian crows trained to track rewards moved by a human demonstrator were more likely to pass the A-not-B test than birds trained on an unrelated choice task involving inhibitory control. Our findings demonstrate that overlooked task demands can affect performance on a cognitive task, and so bring into question MacLean’s conclusion that absolute brain size best predicts self-control. %J Biology Letters %O Biol. Lett. %V 12 %N 2 %I The Royal Society %C London, [England] %@ 1744-9561