%0 Journal Article %A Massy, Ken %A Friedrich, Ronny %A Mittnik, Alissa %A Stockhammer, Philipp W. %+ MHAAM, Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Max Planck Society %T Pedigree-based Bayesian modelling of radiocarbon dates : %G eng %U https://hdl.handle.net/21.11116/0000-000C-3540-0 %R 10.1371/journal.pone.0270374 %7 2022-06-30 %D 2022 %8 30.06.2022 %* Review method: peer-reviewed %X Within the last decade, archaeogenetic analysis has revolutionized archaeological research and enabled novel insights into mobility, relatedness and health of past societies. Now, it is possible to develop these results further and integrate archaeogenetic insights into biological relatedness with radiocarbon dates as means of chronologically sequenced information. In our article, we demonstrate the potential of combining relative chronological information with absolute radiocarbon dates by Bayesian interpretation in order to improve age determinations. Using artificial pedigrees with four sets of simulated radiocarbon dates we show that the combination of relationship information with radiocarbon dates improves the age determination in many cases at least between 20 to 50%. Calibrated age ranges are more constrained than simply calibrating radiocarbon ages independently from each other. Thereby, the precision of modelled ages depends on the precision of the single radiocarbon dates, the number of modelled generations, the shape of the calibration curve and the availability of samples that can be precisely fixed in time due to specific patterns in the calibration curve (“anchor points”). Ambiguous calibrated radiocarbon dates, which are caused by inversions of the calibration curve, can be partly or almost entirely resolved through Bayesian modelling based upon information from pedigrees. Finally, we discuss selected case studies of biological pedigrees achieved for Early Bronze Age Southern Germany by recent archaeogenetic analysis, whereby the sites and pedigrees differ with regard to the quality of information, which can be used for a Bayesian model of the radiocarbon dates. In accordance with the abstract models, radiocarbon dates can again be better constrained and are therefore more applicable for archaeological interpretation and chronological placement of the dated individuals. %J PLoS One %O PLoS One %V 17 %] e0270374 %I Public Library of Science %C San Francisco, CA %@ 1932-6203